client.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. # A simple client that generates sine waves via python-pyaudio
  2. import signal
  3. import pyaudio
  4. import sys
  5. import socket
  6. import time
  7. import math
  8. import struct
  9. import socket
  10. import optparse
  11. import array
  12. import random
  13. import threading
  14. import thread
  15. from packet import Packet, CMD, stoi
  16. parser = optparse.OptionParser()
  17. parser.add_option('-t', '--test', dest='test', action='store_true', help='Play a test sequence (440,<rest>,880,440), then exit')
  18. parser.add_option('-g', '--generator', dest='generator', default='math.sin', help='Set the generator (to a Python expression)')
  19. parser.add_option('--generators', dest='generators', action='store_true', help='Show the list of generators, then exit')
  20. parser.add_option('-u', '--uid', dest='uid', default='', help='Set the UID (identifier) of this client in the network')
  21. parser.add_option('-p', '--port', dest='port', type='int', default=13676, help='Set the port to listen on')
  22. parser.add_option('-r', '--rate', dest='rate', type='int', default=44100, help='Set the sample rate of the audio device')
  23. parser.add_option('-V', '--volume', dest='volume', type='float', default=1.0, help='Set the volume factor (>1 distorts, <1 attenuates)')
  24. parser.add_option('-G', '--gui', dest='gui', default='', help='set a GUI to use')
  25. parser.add_option('--pg-fullscreen', dest='fullscreen', action='store_true', help='Use a full-screen video mode')
  26. parser.add_option('--pg-samp-width', dest='samp_width', type='int', help='Set the width of the sample pane (by default display width / 2)')
  27. parser.add_option('--pg-bgr-width', dest='bgr_width', type='int', help='Set the width of the bargraph pane (by default display width / 2)')
  28. parser.add_option('--pg-height', dest='height', type='int', help='Set the height of the window or full-screen video mode')
  29. options, args = parser.parse_args()
  30. PORT = options.port
  31. STREAMS = 1
  32. IDENT = 'TONE'
  33. UID = options.uid
  34. LAST_SAMP = 0
  35. LAST_SAMPLES = []
  36. FREQ = 0
  37. PHASE = 0
  38. RATE = options.rate
  39. FPB = 64
  40. Z_SAMP = '\x00\x00\x00\x00'
  41. MAX = 0x7fffffff
  42. AMP = MAX
  43. MIN = -0x80000000
  44. def lin_interp(frm, to, p):
  45. return p*to + (1-p)*frm
  46. # GUIs
  47. GUIs = {}
  48. def GUI(f):
  49. GUIs[f.__name__] = f
  50. return f
  51. @GUI
  52. def pygame_notes():
  53. import pygame
  54. import pygame.gfxdraw
  55. pygame.init()
  56. dispinfo = pygame.display.Info()
  57. DISP_WIDTH = 640
  58. DISP_HEIGHT = 480
  59. if dispinfo.current_h > 0 and dispinfo.current_w > 0:
  60. DISP_WIDTH = dispinfo.current_w
  61. DISP_HEIGHT = dispinfo.current_h
  62. SAMP_WIDTH = DISP_WIDTH / 2
  63. if options.samp_width > 0:
  64. SAMP_WIDTH = options.samp_width
  65. BGR_WIDTH = DISP_WIDTH / 2
  66. if options.bgr_width > 0:
  67. BGR_WIDTH = options.bgr_width
  68. HEIGHT = DISP_HEIGHT
  69. if options.height > 0:
  70. HEIGHT = options.height
  71. flags = 0
  72. if options.fullscreen:
  73. flags |= pygame.FULLSCREEN
  74. disp = pygame.display.set_mode((SAMP_WIDTH + BGR_WIDTH, HEIGHT), flags)
  75. WIDTH, HEIGHT = disp.get_size()
  76. SAMP_WIDTH = WIDTH / 2
  77. BGR_WIDTH = WIDTH - SAMP_WIDTH
  78. PFAC = HEIGHT / 128.0
  79. sampwin = pygame.Surface((SAMP_WIDTH, HEIGHT))
  80. lastsy = HEIGHT / 2
  81. clock = pygame.time.Clock()
  82. while True:
  83. if FREQ > 0:
  84. try:
  85. pitch = 12 * math.log(FREQ / 440.0, 2) + 69
  86. except ValueError:
  87. pitch = 0
  88. else:
  89. pitch = 0
  90. col = [int((AMP / MAX) * 255)] * 3
  91. disp.fill((0, 0, 0), (BGR_WIDTH, 0, SAMP_WIDTH, HEIGHT))
  92. disp.scroll(-1, 0)
  93. disp.fill(col, (BGR_WIDTH - 1, HEIGHT - pitch * PFAC - PFAC, 1, PFAC))
  94. sampwin.scroll(-len(LAST_SAMPLES), 0)
  95. x = max(0, SAMP_WIDTH - len(LAST_SAMPLES))
  96. sampwin.fill((0, 0, 0), (x, 0, SAMP_WIDTH - x, HEIGHT))
  97. for i in LAST_SAMPLES:
  98. sy = int((float(i) / MAX) * (HEIGHT / 2) + (HEIGHT / 2))
  99. pygame.gfxdraw.line(sampwin, x - 1, lastsy, x, sy, (0, 255, 0))
  100. x += 1
  101. lastsy = sy
  102. del LAST_SAMPLES[:]
  103. #w, h = SAMP_WIDTH, HEIGHT
  104. #pts = [(BGR_WIDTH, HEIGHT / 2), (w + BGR_WIDTH, HEIGHT / 2)]
  105. #x = w + BGR_WIDTH
  106. #for i in reversed(LAST_SAMPLES):
  107. # pts.insert(1, (x, int((h / 2) + (float(i) / MAX) * (h / 2))))
  108. # x -= 1
  109. # if x < BGR_WIDTH:
  110. # break
  111. #if len(pts) > 2:
  112. # pygame.gfxdraw.aapolygon(disp, pts, [0, 255, 0])
  113. disp.blit(sampwin, (BGR_WIDTH, 0))
  114. pygame.display.flip()
  115. for ev in pygame.event.get():
  116. if ev.type == pygame.KEYDOWN:
  117. if ev.key == pygame.K_ESCAPE:
  118. thread.interrupt_main()
  119. pygame.quit()
  120. exit()
  121. elif ev.type == pygame.QUIT:
  122. thread.interrupt_main()
  123. pygame.quit()
  124. exit()
  125. clock.tick(60)
  126. # Generator functions--should be cyclic within [0, 2*math.pi) and return [-1, 1]
  127. GENERATORS = [{'name': 'math.sin', 'args': None, 'desc': 'Sine function'},
  128. {'name':'math.cos', 'args': None, 'desc': 'Cosine function'}]
  129. def generator(desc=None, args=None):
  130. def inner(f, desc=desc, args=args):
  131. if desc is None:
  132. desc = f.__doc__
  133. GENERATORS.append({'name': f.__name__, 'desc': desc, 'args': args})
  134. return f
  135. return inner
  136. @generator('Simple triangle wave (peaks/troughs at pi/2, 3pi/2)')
  137. def tri_wave(theta):
  138. if theta < math.pi/2:
  139. return lin_interp(0, 1, theta/(math.pi/2))
  140. elif theta < 3*math.pi/2:
  141. return lin_interp(1, -1, (theta-math.pi/2)/math.pi)
  142. else:
  143. return lin_interp(-1, 0, (theta-3*math.pi/2)/(math.pi/2))
  144. @generator('Saw wave (line from (0, 1) to (2pi, -1))')
  145. def saw_wave(theta):
  146. return lin_interp(1, -1, theta/(math.pi * 2))
  147. @generator('Simple square wave (piecewise 1 at x<pi, 0 else)')
  148. def square_wave(theta):
  149. if theta < math.pi:
  150. return 1
  151. else:
  152. return -1
  153. @generator('Random (noise) generator')
  154. def noise(theta):
  155. return random.random() * 2 - 1
  156. @generator('File generator', '(<file>[, <bits=8>[, <signed=True>[, <0=linear interp (default), 1=nearest>[, <swapbytes=False>]]]])')
  157. class file_samp(object):
  158. LINEAR = 0
  159. NEAREST = 1
  160. TYPES = {8: 'B', 16: 'H', 32: 'L'}
  161. def __init__(self, fname, bits=8, signed=True, samp=LINEAR, swab=False):
  162. tp = self.TYPES[bits]
  163. if signed:
  164. tp = tp.lower()
  165. self.max = float((2 << bits) - 1)
  166. self.buffer = array.array(tp)
  167. self.buffer.fromstring(open(fname, 'rb').read())
  168. if swab:
  169. self.buffer.byteswap()
  170. self.samp = samp
  171. def __call__(self, theta):
  172. norm = theta / (2*math.pi)
  173. if self.samp == self.LINEAR:
  174. v = norm*len(self.buffer)
  175. l = int(math.floor(v))
  176. h = int(math.ceil(v))
  177. if l == h:
  178. return self.buffer[l]/self.max
  179. if h >= len(self.buffer):
  180. h = 0
  181. return lin_interp(self.buffer[l], self.buffer[h], v-l)/self.max
  182. elif self.samp == self.NEAREST:
  183. return self.buffer[int(math.ceil(norm*len(self.buffer) - 0.5))]/self.max
  184. @generator('Harmonics generator (adds overtones at f, 2f, 3f, 4f, etc.)', '(<generator>, <amplitude of f>, <amp 2f>, <amp 3f>, ...)')
  185. class harmonic(object):
  186. def __init__(self, gen, *spectrum):
  187. self.gen = gen
  188. self.spectrum = spectrum
  189. def __call__(self, theta):
  190. return max(-1, min(1, sum([amp*self.gen((i+1)*theta % (2*math.pi)) for i, amp in enumerate(self.spectrum)])))
  191. @generator('General harmonics generator (adds arbitrary overtones)', '(<generator>, <factor of f>, <amplitude>, <factor>, <amplitude>, ...)')
  192. class genharmonic(object):
  193. def __init__(self, gen, *harmonics):
  194. self.gen = gen
  195. self.harmonics = zip(harmonics[::2], harmonics[1::2])
  196. def __call__(self, theta):
  197. return max(-1, min(1, sum([amp * self.gen(i * theta % (2*math.pi)) for i, amp in self.harmonics])))
  198. @generator('Mix generator', '(<generator>[, <amp>], [<generator>[, <amp>], [...]])')
  199. class mixer(object):
  200. def __init__(self, *specs):
  201. self.pairs = []
  202. i = 0
  203. while i < len(specs):
  204. if i+1 < len(specs) and isinstance(specs[i+1], (float, int)):
  205. pair = (specs[i], specs[i+1])
  206. i += 2
  207. else:
  208. pair = (specs[i], None)
  209. i += 1
  210. self.pairs.append(pair)
  211. tamp = 1 - min(1, sum([amp for gen, amp in self.pairs if amp is not None]))
  212. parts = float(len([None for gen, amp in self.pairs if amp is None]))
  213. for idx, pair in enumerate(self.pairs):
  214. if pair[1] is None:
  215. self.pairs[idx] = (pair[0], tamp / parts)
  216. def __call__(self, theta):
  217. return max(-1, min(1, sum([amp*gen(theta) for gen, amp in self.pairs])))
  218. @generator('Phase offset generator (in radians; use math.pi)', '(<generator>, <offset>)')
  219. class phase_off(object):
  220. def __init__(self, gen, offset):
  221. self.gen = gen
  222. self.offset = offset
  223. def __call__(self, theta):
  224. return self.gen((theta + self.offset) % (2*math.pi))
  225. if options.generators:
  226. for item in GENERATORS:
  227. print item['name'],
  228. if item['args'] is not None:
  229. print item['args'],
  230. print '--', item['desc']
  231. exit()
  232. #generator = math.sin
  233. #generator = tri_wave
  234. #generator = square_wave
  235. generator = eval(options.generator)
  236. def sigalrm(sig, frm):
  237. global FREQ
  238. FREQ = 0
  239. def lin_seq(frm, to, cnt):
  240. step = (to-frm)/float(cnt)
  241. samps = [0]*cnt
  242. for i in xrange(cnt):
  243. p = i / float(cnt-1)
  244. samps[i] = int(lin_interp(frm, to, p))
  245. return samps
  246. def samps(freq, phase, cnt):
  247. global RATE, AMP
  248. samps = [0]*cnt
  249. for i in xrange(cnt):
  250. samps[i] = int(AMP * max(-1, min(1, options.volume*generator((phase + 2 * math.pi * freq * i / RATE) % (2*math.pi)))))
  251. return samps, (phase + 2 * math.pi * freq * cnt / RATE) % (2*math.pi)
  252. def to_data(samps):
  253. return struct.pack('i'*len(samps), *samps)
  254. def gen_data(data, frames, time, status):
  255. global FREQ, PHASE, Z_SAMP, LAST_SAMP, LAST_SAMPLES
  256. if FREQ == 0:
  257. PHASE = 0
  258. if LAST_SAMP == 0:
  259. if options.gui:
  260. LAST_SAMPLES.extend([0]*frames)
  261. return (Z_SAMP*frames, pyaudio.paContinue)
  262. fdata = lin_seq(LAST_SAMP, 0, frames)
  263. if options.gui:
  264. LAST_SAMPLES.extend(fdata)
  265. LAST_SAMP = fdata[-1]
  266. return (to_data(fdata), pyaudio.paContinue)
  267. fdata, PHASE = samps(FREQ, PHASE, frames)
  268. if options.gui:
  269. LAST_SAMPLES.extend(fdata)
  270. LAST_SAMP = fdata[-1]
  271. return (to_data(fdata), pyaudio.paContinue)
  272. pa = pyaudio.PyAudio()
  273. stream = pa.open(rate=RATE, channels=1, format=pyaudio.paInt32, output=True, frames_per_buffer=FPB, stream_callback=gen_data)
  274. if options.gui:
  275. guithread = threading.Thread(target=GUIs[options.gui])
  276. guithread.setDaemon(True)
  277. guithread.start()
  278. if options.test:
  279. FREQ = 440
  280. time.sleep(1)
  281. FREQ = 0
  282. time.sleep(1)
  283. FREQ = 880
  284. time.sleep(1)
  285. FREQ = 440
  286. time.sleep(2)
  287. exit()
  288. sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
  289. sock.bind(('', PORT))
  290. signal.signal(signal.SIGALRM, sigalrm)
  291. while True:
  292. data = ''
  293. while not data:
  294. try:
  295. data, cli = sock.recvfrom(4096)
  296. except socket.error:
  297. pass
  298. pkt = Packet.FromStr(data)
  299. print 'From', cli, 'command', pkt.cmd
  300. if pkt.cmd == CMD.KA:
  301. pass
  302. elif pkt.cmd == CMD.PING:
  303. sock.sendto(data, cli)
  304. elif pkt.cmd == CMD.QUIT:
  305. break
  306. elif pkt.cmd == CMD.PLAY:
  307. dur = pkt.data[0]+pkt.data[1]/1000000.0
  308. FREQ = pkt.data[2]
  309. AMP = MAX * max(min(pkt.as_float(3), 1.0), 0.0)
  310. signal.setitimer(signal.ITIMER_REAL, dur)
  311. elif pkt.cmd == CMD.CAPS:
  312. data = [0] * 8
  313. data[0] = STREAMS
  314. data[1] = stoi(IDENT)
  315. for i in xrange(len(UID)/4):
  316. data[i+2] = stoi(UID[4*i:4*(i+1)])
  317. sock.sendto(str(Packet(CMD.CAPS, *data)), cli)
  318. else:
  319. print 'Unknown cmd', pkt.cmd