client.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. # A simple client that generates sine waves via python-pyaudio
  2. import signal
  3. import pyaudio
  4. import sys
  5. import socket
  6. import time
  7. import math
  8. import struct
  9. import socket
  10. import optparse
  11. import array
  12. import random
  13. import threading
  14. import thread
  15. import colorsys
  16. import mmap
  17. import os
  18. import atexit
  19. from packet import Packet, CMD, PLF, stoi, OBLIGATE_POLYPHONE
  20. parser = optparse.OptionParser()
  21. parser.add_option('-t', '--test', dest='test', action='store_true', help='Play a test sequence (440,<rest>,880,440), then exit')
  22. parser.add_option('-g', '--generator', dest='generator', default='math.sin', help='Set the generator (to a Python expression)')
  23. parser.add_option('--generators', dest='generators', action='store_true', help='Show the list of generators, then exit')
  24. parser.add_option('-u', '--uid', dest='uid', default='', help='Set the UID (identifier) of this client in the network')
  25. parser.add_option('-p', '--port', dest='port', type='int', default=13676, help='Set the port to listen on')
  26. parser.add_option('-r', '--rate', dest='rate', type='int', default=44100, help='Set the sample rate of the audio device')
  27. parser.add_option('-V', '--volume', dest='volume', type='float', default=1.0, help='Set the volume factor (>1 distorts, <1 attenuates)')
  28. parser.add_option('-n', '--streams', dest='streams', type='int', default=1, help='Set the number of streams this client will play back')
  29. parser.add_option('-N', '--numpy', dest='numpy', action='store_true', help='Use numpy acceleration')
  30. parser.add_option('-G', '--gui', dest='gui', default='', help='set a GUI to use')
  31. parser.add_option('-c', '--clamp', dest='clamp', action='store_true', help='Clamp over-the-wire amplitudes to 0.0-1.0')
  32. parser.add_option('-C', '--chorus', dest='chorus', default=0.0, type='float', help='Apply uniform random offsets (in MIDI pitch space)')
  33. parser.add_option('--amp-exp', dest='amp_exp', default=2.0, type='float', help='Raise floating amplitude to this power before computing raw amplitude')
  34. parser.add_option('--vibrato', dest='vibrato', default=0.0, type='float', help='Apply periodic perturbances in pitch space by this amplitude (in MIDI pitches)')
  35. parser.add_option('--vibrato-freq', dest='vibrato_freq', default=6.0, type='float', help='Frequency of the vibrato perturbances in Hz')
  36. parser.add_option('--fmul', dest='fmul', default=1.0, type='float', help='Multiply requested frequencies by this amount')
  37. parser.add_option('--narts', dest='narts', default=64, type='int', help='Store this many articulation parameters for generator use (global is GARTS, voice-local is LARTS)')
  38. parser.add_option('--pg-fullscreen', dest='fullscreen', action='store_true', help='Use a full-screen video mode')
  39. parser.add_option('--pg-samp-width', dest='samp_width', type='int', help='Set the width of the sample pane (by default display width / 2)')
  40. parser.add_option('--pg-bgr-width', dest='bgr_width', type='int', help='Set the width of the bargraph pane (by default display width / 2)')
  41. parser.add_option('--pg-height', dest='height', type='int', help='Set the height of the window or full-screen video mode')
  42. parser.add_option('--pg-no-colback', dest='no_colback', action='store_true', help='Don\'t render a colored background')
  43. parser.add_option('--pg-low-freq', dest='low_freq', type='int', default=40, help='Low frequency for colored background')
  44. parser.add_option('--pg-high-freq', dest='high_freq', type='int', default=1500, help='High frequency for colored background')
  45. parser.add_option('--pg-log-base', dest='log_base', type='int', default=2, help='Logarithmic base for coloring (0 to make linear)')
  46. parser.add_option('--map-file', dest='map_file', default='client_map', help='File mapped by -G mapped (contains u32 frequency, f32 amplitude pairs for each voice)')
  47. parser.add_option('--map-interval', dest='map_interval', type='float', default=0.02, help='Period in seconds between refreshes of the map')
  48. parser.add_option('--map-samples', dest='map_samples', type='int', default=4096, help='Number of samples in the map file (MUST agree with renderer)')
  49. parser.add_option('--counter-modulus', dest='counter_modulus', type='int', default=16, help='Number of packet events in period of the terminal color scroll on the left margin')
  50. parser.add_option('--pcm-corr-rate', dest='pcm_corr_rate', type='float', default=0.05, help='Amount of time to correct buffer drift, measured as percentage of the current sync rate')
  51. options, args = parser.parse_args()
  52. if options.numpy:
  53. import numpy
  54. PORT = options.port
  55. STREAMS = options.streams
  56. IDENT = 'TONE'
  57. UID = options.uid
  58. LAST_SAMPS = [0] * STREAMS
  59. LAST_SAMPLES = []
  60. FREQS = [0] * STREAMS
  61. REAL_FREQS = [0] * STREAMS
  62. PHASES = [0] * STREAMS
  63. RATE = options.rate
  64. FPB = 64
  65. Z_SAMP = '\x00\x00\x00\x00'
  66. MAX = 0x7fffffff
  67. AMPS = [MAX] * STREAMS
  68. MIN = -0x80000000
  69. EXPIRATIONS = [0] * STREAMS
  70. QUEUED_PCM = ''
  71. DRIFT_FACTOR = 1.0
  72. DRIFT_ERROR = 0.0
  73. LAST_SYN = None
  74. CUR_PERIODS = [0] * STREAMS
  75. CUR_PERIOD = 0.0
  76. GARTS = [0.0] * options.narts
  77. VLARTS = [[0.0] * options.narts for i in xrange(STREAMS)]
  78. LARTS = None
  79. def lin_interp(frm, to, p):
  80. return p*to + (1-p)*frm
  81. def rgb_for_freq_amp(f, a):
  82. a = max((min((a, 1.0)), 0.0))
  83. pitchval = float(f - options.low_freq) / (options.high_freq - options.low_freq)
  84. if options.log_base == 0:
  85. try:
  86. pitchval = math.log(pitchval) / math.log(options.log_base)
  87. except ValueError:
  88. pass
  89. bgcol = colorsys.hls_to_rgb(min((1.0, max((0.0, pitchval)))), 0.5 * (a ** 2), 1.0)
  90. return [int(i*255) for i in bgcol]
  91. # GUIs
  92. GUIs = {}
  93. def GUI(f):
  94. GUIs[f.__name__] = f
  95. return f
  96. @GUI
  97. def pygame_notes():
  98. import pygame
  99. import pygame.gfxdraw
  100. pygame.init()
  101. dispinfo = pygame.display.Info()
  102. DISP_WIDTH = 640
  103. DISP_HEIGHT = 480
  104. if dispinfo.current_h > 0 and dispinfo.current_w > 0:
  105. DISP_WIDTH = dispinfo.current_w
  106. DISP_HEIGHT = dispinfo.current_h
  107. SAMP_WIDTH = DISP_WIDTH / 2
  108. if options.samp_width > 0:
  109. SAMP_WIDTH = options.samp_width
  110. BGR_WIDTH = DISP_WIDTH / 2
  111. if options.bgr_width > 0:
  112. BGR_WIDTH = options.bgr_width
  113. HEIGHT = DISP_HEIGHT
  114. if options.height > 0:
  115. HEIGHT = options.height
  116. flags = 0
  117. if options.fullscreen:
  118. flags |= pygame.FULLSCREEN
  119. disp = pygame.display.set_mode((SAMP_WIDTH + BGR_WIDTH, HEIGHT), flags)
  120. WIDTH, HEIGHT = disp.get_size()
  121. SAMP_WIDTH = WIDTH / 2
  122. BGR_WIDTH = WIDTH - SAMP_WIDTH
  123. PFAC = HEIGHT / 128.0
  124. sampwin = pygame.Surface((SAMP_WIDTH, HEIGHT))
  125. sampwin.set_colorkey((0, 0, 0))
  126. lastsy = HEIGHT / 2
  127. bgrwin = pygame.Surface((BGR_WIDTH, HEIGHT))
  128. bgrwin.set_colorkey((0, 0, 0))
  129. clock = pygame.time.Clock()
  130. font = pygame.font.SysFont(pygame.font.get_default_font(), 24)
  131. while True:
  132. if options.no_colback:
  133. disp.fill((0, 0, 0), (0, 0, WIDTH, HEIGHT))
  134. else:
  135. gap = WIDTH / STREAMS
  136. for i in xrange(STREAMS):
  137. FREQ = REAL_FREQS[i]
  138. AMP = AMPS[i]
  139. if FREQ > 0:
  140. bgcol = rgb_for_freq_amp(FREQ, float(AMP) / MAX)
  141. else:
  142. bgcol = (0, 0, 0)
  143. #print i, ':', pitchval
  144. disp.fill(bgcol, (i*gap, 0, gap, HEIGHT))
  145. bgrwin.scroll(-1, 0)
  146. bgrwin.fill((0, 0, 0), (BGR_WIDTH - 1, 0, 1, HEIGHT))
  147. for i in xrange(STREAMS):
  148. FREQ = REAL_FREQS[i]
  149. AMP = AMPS[i]
  150. if FREQ > 0:
  151. try:
  152. pitch = 12 * math.log(FREQ / 440.0, 2) + 69
  153. except ValueError:
  154. pitch = 0
  155. else:
  156. pitch = 0
  157. col = [min(max(int((AMP / MAX) * 255), 0), 255)] * 3
  158. bgrwin.fill(col, (BGR_WIDTH - 1, HEIGHT - pitch * PFAC - PFAC, 1, PFAC))
  159. sampwin.scroll(-len(LAST_SAMPLES), 0)
  160. x = max(0, SAMP_WIDTH - len(LAST_SAMPLES))
  161. sampwin.fill((0, 0, 0), (x, 0, SAMP_WIDTH - x, HEIGHT))
  162. for i in LAST_SAMPLES:
  163. sy = int((float(i) / MAX) * (HEIGHT / 2) + (HEIGHT / 2))
  164. pygame.gfxdraw.line(sampwin, x - 1, lastsy, x, sy, (0, 255, 0))
  165. x += 1
  166. lastsy = sy
  167. del LAST_SAMPLES[:]
  168. #w, h = SAMP_WIDTH, HEIGHT
  169. #pts = [(BGR_WIDTH, HEIGHT / 2), (w + BGR_WIDTH, HEIGHT / 2)]
  170. #x = w + BGR_WIDTH
  171. #for i in reversed(LAST_SAMPLES):
  172. # pts.insert(1, (x, int((h / 2) + (float(i) / MAX) * (h / 2))))
  173. # x -= 1
  174. # if x < BGR_WIDTH:
  175. # break
  176. #if len(pts) > 2:
  177. # pygame.gfxdraw.aapolygon(disp, pts, [0, 255, 0])
  178. disp.blit(bgrwin, (0, 0))
  179. disp.blit(sampwin, (BGR_WIDTH, 0))
  180. if QUEUED_PCM:
  181. tsurf = font.render('%+011.6g'%(DRIFT_FACTOR - 1,), True, (255, 255, 255), (0, 0, 0))
  182. disp.fill((0, 0, 0), tsurf.get_rect())
  183. disp.blit(tsurf, (0, 0))
  184. pygame.display.flip()
  185. for ev in pygame.event.get():
  186. if ev.type == pygame.KEYDOWN:
  187. if ev.key == pygame.K_ESCAPE:
  188. thread.interrupt_main()
  189. pygame.quit()
  190. exit()
  191. elif ev.type == pygame.QUIT:
  192. thread.interrupt_main()
  193. pygame.quit()
  194. exit()
  195. clock.tick(60)
  196. @GUI
  197. def mapped():
  198. if os.path.exists(options.map_file):
  199. raise ValueError('Refusing to map file--already exists!')
  200. ms = options.map_samples
  201. stm = options.map_interval
  202. fixfmt = '>f'
  203. fixfmtsz = struct.calcsize(fixfmt)
  204. sigfmt = '>' + 'f' * ms
  205. sigfmtsz = struct.calcsize(sigfmt)
  206. strfmt = '>' + 'Lf' * STREAMS
  207. strfmtsz = struct.calcsize(strfmt)
  208. sz = sum((fixfmtsz, sigfmtsz, strfmtsz))
  209. print 'Reserving', sz, 'in map file'
  210. print 'Size triple:', fixfmtsz, sigfmtsz, strfmtsz
  211. f = open(options.map_file, 'w+')
  212. f.seek(sz - 1)
  213. f.write('\0')
  214. f.flush()
  215. mapping = mmap.mmap(f.fileno(), sz, access=mmap.ACCESS_WRITE)
  216. f.close()
  217. atexit.register(os.unlink, options.map_file)
  218. def unzip2(i):
  219. for a, b in i:
  220. yield a
  221. yield b
  222. while True:
  223. mapping[:fixfmtsz] = struct.pack(fixfmt, (DRIFT_FACTOR - 1.0) if QUEUED_PCM else 0.0)
  224. mapping[fixfmtsz:fixfmtsz+sigfmtsz] = struct.pack(sigfmt, *(float(LAST_SAMPLES[i])/MAX if i < len(LAST_SAMPLES) else 0.0 for i in xrange(ms)))
  225. mapping[fixfmtsz+sigfmtsz:] = struct.pack(strfmt, *unzip2((FREQS[i], float(AMPS[i])/MAX) for i in xrange(STREAMS)))
  226. del LAST_SAMPLES[:]
  227. time.sleep(stm)
  228. # Generator functions--should be cyclic within [0, 2*math.pi) and return [-1, 1]
  229. GENERATORS = [{'name': 'math.sin', 'args': None, 'desc': 'Sine function'},
  230. {'name':'math.cos', 'args': None, 'desc': 'Cosine function'}]
  231. def generator(desc=None, args=None):
  232. def inner(f, desc=desc, args=args):
  233. if desc is None:
  234. desc = f.__doc__
  235. GENERATORS.append({'name': f.__name__, 'desc': desc, 'args': args})
  236. return f
  237. return inner
  238. @generator('Simple triangle wave (peaks/troughs at pi/2, 3pi/2)')
  239. def tri_wave(theta):
  240. if theta < math.pi/2:
  241. return lin_interp(0, 1, theta/(math.pi/2))
  242. elif theta < 3*math.pi/2:
  243. return lin_interp(1, -1, (theta-math.pi/2)/math.pi)
  244. else:
  245. return lin_interp(-1, 0, (theta-3*math.pi/2)/(math.pi/2))
  246. @generator('Saw wave (line from (0, 1) to (2pi, -1))')
  247. def saw_wave(theta):
  248. return lin_interp(1, -1, theta/(math.pi * 2))
  249. @generator('Simple square wave (piecewise 1 at x<pi, 0 else)')
  250. def square_wave(theta):
  251. if theta < math.pi:
  252. return 1
  253. else:
  254. return -1
  255. @generator('Random (noise) generator')
  256. def noise(theta):
  257. return random.random() * 2 - 1
  258. @generator('Square generator with polynomial falloff')
  259. class sq_cub(object):
  260. def __init__(self, mina, degree=1.0/3):
  261. self.mina = mina
  262. self.degree = degree
  263. def __call__(self, theta):
  264. if theta < math.pi:
  265. return 1 - (1 - self.mina) * ((theta / math.pi) ** self.degree)
  266. else:
  267. return -1 + (1 - self.mina) * (((theta - math.pi) / math.pi) ** self.degree)
  268. @generator('Impulse-like square')
  269. class impulse(object):
  270. def __init__(self, dc=0.01):
  271. self.dc = dc
  272. def __call__(self, theta):
  273. if theta < self.dc * math.pi:
  274. return 1
  275. elif theta < math.pi:
  276. return 0
  277. elif theta < (1+self.dc) * math.pi:
  278. return -1
  279. else:
  280. return 0
  281. @generator('File generator', '(<file>[, <bits=8>[, <signed=True>[, <0=linear interp (default), 1=nearest>[, <swapbytes=False>[, <loop=(fraction to loop, 0.0 is all, 1.0 is end, or False to not loop)>[, <loopend=1.0>[, periods=1 (periods in wave file)/freq=None (base frequency)/pitch=None (base MIDI pitch)]]]]]]])')
  282. class file_samp(object):
  283. LINEAR = 0
  284. NEAREST = 1
  285. TYPES = {8: 'B', 16: 'H', 32: 'L'}
  286. def __init__(self, fname, bits=8, signed=True, samp=LINEAR, swab=False, loop=0.0, loopend=1.0, periods=1.0, freq=None, pitch=None):
  287. tp = self.TYPES[bits]
  288. if signed:
  289. tp = tp.lower()
  290. self.max = float((2 << bits) - 1)
  291. if signed:
  292. self.max /= 2.0
  293. self.buffer = array.array(tp)
  294. self.buffer.fromstring(open(fname, 'rb').read())
  295. if swab:
  296. self.buffer.byteswap()
  297. self.samp = samp
  298. self.loop = loop
  299. self.loopend = loopend
  300. self.periods = periods
  301. if pitch is not None:
  302. freq = 440.0 * 2 ** ((pitch - 69) / 12.0)
  303. if freq is not None:
  304. self.periods = freq * len(self.buffer) / RATE
  305. print 'file_samp periods:', self.periods, 'freq:', freq, 'pitch:', pitch
  306. def __call__(self, theta):
  307. full_norm = CUR_PERIOD / (2*self.periods*math.pi)
  308. if full_norm > 1.0:
  309. if self.loop is False:
  310. return self.buffer[0]
  311. else:
  312. norm = (full_norm - 1.0) / (self.loopend - self.loop) % 1.0 * (self.loopend - self.loop) + self.loop
  313. else:
  314. norm = full_norm
  315. norm %= 1.0
  316. if self.samp == self.LINEAR:
  317. v = norm*len(self.buffer)
  318. l = int(math.floor(v))
  319. h = int(math.ceil(v))
  320. if l == h:
  321. return self.buffer[l]/self.max
  322. if h >= len(self.buffer):
  323. h = 0
  324. return lin_interp(self.buffer[l], self.buffer[h], v-l)/self.max
  325. elif self.samp == self.NEAREST:
  326. return self.buffer[int(math.ceil(norm*len(self.buffer) - 0.5))]/self.max
  327. @generator('Harmonics generator (adds overtones at f, 2f, 3f, 4f, etc.)', '(<generator>, <amplitude of f>, <amp 2f>, <amp 3f>, ...)')
  328. class harmonic(object):
  329. def __init__(self, gen, *spectrum):
  330. self.gen = gen
  331. self.spectrum = spectrum
  332. def __call__(self, theta):
  333. return max(-1, min(1, sum([amp*self.gen((i+1)*theta % (2*math.pi)) for i, amp in enumerate(self.spectrum)])))
  334. @generator('General harmonics generator (adds arbitrary overtones)', '(<generator>, <factor of f>, <amplitude>, <factor>, <amplitude>, ...)')
  335. class genharmonic(object):
  336. def __init__(self, gen, *harmonics):
  337. self.gen = gen
  338. self.harmonics = zip(harmonics[::2], harmonics[1::2])
  339. def __call__(self, theta):
  340. return max(-1, min(1, sum([amp * self.gen(i * theta % (2*math.pi)) for i, amp in self.harmonics])))
  341. @generator('Mix generator', '(<generator>[, <amp>], [<generator>[, <amp>], [...]])')
  342. class mixer(object):
  343. def __init__(self, *specs):
  344. self.pairs = []
  345. i = 0
  346. while i < len(specs):
  347. if i+1 < len(specs) and isinstance(specs[i+1], (float, int)):
  348. pair = (specs[i], specs[i+1])
  349. i += 2
  350. else:
  351. pair = (specs[i], None)
  352. i += 1
  353. self.pairs.append(pair)
  354. tamp = 1 - min(1, sum([amp for gen, amp in self.pairs if amp is not None]))
  355. parts = float(len([None for gen, amp in self.pairs if amp is None]))
  356. for idx, pair in enumerate(self.pairs):
  357. if pair[1] is None:
  358. self.pairs[idx] = (pair[0], tamp / parts)
  359. def __call__(self, theta):
  360. return max(-1, min(1, sum([amp*gen(theta) for gen, amp in self.pairs])))
  361. @generator('Phase offset generator (in radians; use math.pi)', '(<generator>, <offset>)')
  362. class phase_off(object):
  363. def __init__(self, gen, offset):
  364. self.gen = gen
  365. self.offset = offset
  366. def __call__(self, theta):
  367. return self.gen((theta + self.offset) % (2*math.pi))
  368. @generator('Normally distributed random-inversion square waves (chorus effect)', '(<sigma>)')
  369. class nd_square_wave(object):
  370. def __init__(self, sig):
  371. self.sig = sig
  372. self.invt = 0
  373. self.lastp = 2*math.pi
  374. def __call__(self, theta):
  375. if theta < self.lastp:
  376. self.invt = random.normalvariate(math.pi, self.sig)
  377. self.lastp = theta
  378. return -1 if theta < self.invt else 1
  379. @generator('Normally distributed random-point triangle waves (chorus effect)', '(<sigma>)')
  380. class nd_tri_wave(object):
  381. def __init__(self, sig):
  382. self.sig = sig
  383. self.p1 = 0.5*math.pi
  384. self.p2 = 1.5*math.pi
  385. self.lastp = 2*math.pi
  386. def __call__(self, theta):
  387. if theta < self.lastp:
  388. self.p1 = random.normalvariate(0.5*math.pi, self.sig)
  389. self.p2 = random.normalvariate(1.5*math.pi, self.sig)
  390. self.lastp = theta
  391. if theta < self.p1:
  392. return lin_interp(0, 1, theta / self.p1)
  393. elif theta < self.p2:
  394. return lin_interp(1, -1, (theta - self.p1) / (self.p2 - self.p1))
  395. else:
  396. return lin_interp(-1, 0, (theta - self.p2) / (2*math.pi - self.p2))
  397. @generator('Random phase offset', '(<generator>, <noise factor>)')
  398. class rand_phase_off(object):
  399. def __init__(self, gen, fac):
  400. self.gen = gen
  401. self.fac = fac
  402. def __call__(self, theta):
  403. return self.gen((theta + self.fac * random.random()) % (2*math.pi))
  404. @generator('Infinite Impulse Response low pass filter', '(<generator>, <RC normalized to dt=1 sample>)')
  405. class lowpass(object):
  406. def __init__(self, gen, rc):
  407. self.gen = gen
  408. self.alpha = 1.0 / (rc + 1)
  409. self.last = 0
  410. def __call__(self, theta):
  411. self.last += self.alpha * (self.gen(theta) - self.last)
  412. return self.last
  413. @generator('Infinite Impulse Response high pass filter', '(<generator>, <RC normalized to dt=1 sample>)')
  414. class highpass(object):
  415. def __init__(self, gen, rc):
  416. self.gen = gen
  417. self.alpha = rc / (rc + 1.0)
  418. self.last = 0
  419. self.lastx = 0
  420. def __call__(self, theta):
  421. x = self.gen(theta)
  422. self.last = self.alpha * (self.last + x - self.lastx)
  423. self.lastx = x
  424. return self.last
  425. @generator('Applies a function to itself repeatedly; often used with filters', '(<times>, <func>, <inner>, <extra arg 1>, <extra arg 2>, ...)')
  426. def order(n, f, i, *args):
  427. cur = f(i, *args)
  428. while n > 0:
  429. cur = f(cur, *args)
  430. n -= 1
  431. return cur
  432. if options.generators:
  433. for item in GENERATORS:
  434. print item['name'],
  435. if item['args'] is not None:
  436. print item['args'],
  437. print '--', item['desc']
  438. exit()
  439. #generator = math.sin
  440. #generator = tri_wave
  441. #generator = square_wave
  442. generator = eval(options.generator)
  443. #def sigalrm(sig, frm):
  444. # global FREQ
  445. # FREQ = 0
  446. if options.numpy:
  447. def lin_seq(frm, to, cnt):
  448. return numpy.linspace(frm, to, cnt, dtype=numpy.int32)
  449. def samps(freq, amp, phase, cnt):
  450. global CUR_PERIOD
  451. samps = numpy.ndarray((cnt,), numpy.int32)
  452. pvel = 2 * math.pi * freq / RATE
  453. fac = options.volume * amp / float(STREAMS)
  454. for i in xrange(cnt):
  455. samps[i] = fac * max(-1, min(1, generator((phase + i * pvel) % (2*math.pi))))
  456. CUR_PERIOD += pvel
  457. return samps, phase + pvel * cnt
  458. def to_data(samps):
  459. return samps.tobytes()
  460. def mix(a, b):
  461. return a + b
  462. def resample(samps, amt):
  463. samps = numpy.frombuffer(samps, numpy.int32)
  464. return numpy.interp(numpy.linspace(0, samps.shape[0], amt, False), numpy.linspace(0, samps.shape[0], samps.shape[0], False), samps).astype(numpy.int32).tobytes()
  465. else:
  466. def lin_seq(frm, to, cnt):
  467. step = (to-frm)/float(cnt)
  468. samps = [0]*cnt
  469. for i in xrange(cnt):
  470. p = i / float(cnt-1)
  471. samps[i] = int(lin_interp(frm, to, p))
  472. return samps
  473. def samps(freq, amp, phase, cnt):
  474. global RATE, CUR_PERIOD
  475. samps = [0]*cnt
  476. for i in xrange(cnt):
  477. samps[i] = int(amp / float(STREAMS) * max(-1, min(1, options.volume*generator((phase + 2 * math.pi * freq * i / RATE) % (2*math.pi)))))
  478. CUR_PERIOD += 2 * math.pi * freq / RATE
  479. next_phase = (phase + 2 * math.pi * freq * cnt / RATE)
  480. return samps, next_phase
  481. def to_data(samps):
  482. return struct.pack('i'*len(samps), *samps)
  483. def mix(a, b):
  484. return [min(MAX, max(MIN, i + j)) for i, j in zip(a, b)]
  485. def resample(samps, amt):
  486. isl = len(samps) / 4
  487. if isl == amt:
  488. return samps
  489. arr = struct.unpack(str(isl)+'i', samps)
  490. out = []
  491. for i in range(amt):
  492. effidx = i * (isl / amt)
  493. ieffidx = int(effidx)
  494. if ieffidx == effidx:
  495. out.append(arr[ieffidx])
  496. else:
  497. frac = effidx - ieffidx
  498. out.append(arr[ieffidx] * (1-frac) + arr[ieffidx+1] * frac)
  499. return struct.pack(str(amt)+'i', *out)
  500. def gen_data(data, frames, tm, status):
  501. global FREQS, PHASE, Z_SAMP, LAST_SAMP, LAST_SAMPLES, QUEUED_PCM, DRIFT_FACTOR, DRIFT_ERROR, CUR_PERIOD, LARTS
  502. if len(QUEUED_PCM) >= frames*4:
  503. desired_frames = DRIFT_FACTOR * frames
  504. err_frames = desired_frames - int(desired_frames)
  505. desired_frames = int(desired_frames)
  506. DRIFT_ERROR += err_frames
  507. if DRIFT_ERROR >= 1.0:
  508. desired_frames += 1
  509. DRIFT_ERROR -= 1.0
  510. fdata = QUEUED_PCM[:desired_frames*4]
  511. QUEUED_PCM = QUEUED_PCM[desired_frames*4:]
  512. if options.gui:
  513. LAST_SAMPLES.extend(struct.unpack(str(desired_frames)+'i', fdata))
  514. return resample(fdata, frames), pyaudio.paContinue
  515. if options.numpy:
  516. fdata = numpy.zeros((frames,), numpy.int32)
  517. else:
  518. fdata = [0] * frames
  519. for i in range(STREAMS):
  520. FREQ = FREQS[i]
  521. if options.vibrato > 0 and FREQ > 0:
  522. midi = 12 * math.log(FREQ / 440.0, 2) + 69
  523. midi += options.vibrato * math.sin(time.time() * 2 * math.pi * options.vibrato_freq + i * 2 * math.pi / STREAMS)
  524. FREQ = 440.0 * 2 ** ((midi - 69) / 12)
  525. REAL_FREQS[i] = FREQ
  526. LAST_SAMP = LAST_SAMPS[i]
  527. AMP = AMPS[i]
  528. EXPIRATION = EXPIRATIONS[i]
  529. PHASE = PHASES[i]
  530. CUR_PERIOD = CUR_PERIODS[i]
  531. LARTS = VLARTS[i]
  532. if FREQ != 0:
  533. if time.time() > EXPIRATION:
  534. FREQ = 0
  535. FREQS[i] = 0
  536. if FREQ == 0:
  537. if LAST_SAMP != 0:
  538. vdata = lin_seq(LAST_SAMP, 0, frames)
  539. fdata = mix(fdata, vdata)
  540. LAST_SAMPS[i] = vdata[-1]
  541. else:
  542. vdata, CUR_PERIOD = samps(FREQ, AMP, CUR_PERIOD, frames)
  543. PHASE = (PHASE + CUR_PERIOD) % (2 * math.pi)
  544. fdata = mix(fdata, vdata)
  545. PHASES[i] = PHASE
  546. CUR_PERIODS[i] = CUR_PERIOD
  547. LAST_SAMPS[i] = vdata[-1]
  548. if options.gui:
  549. LAST_SAMPLES.extend(fdata)
  550. return (to_data(fdata), pyaudio.paContinue)
  551. pa = pyaudio.PyAudio()
  552. stream = pa.open(rate=RATE, channels=1, format=pyaudio.paInt32, output=True, frames_per_buffer=FPB, stream_callback=gen_data)
  553. if options.gui:
  554. guithread = threading.Thread(target=GUIs[options.gui])
  555. guithread.setDaemon(True)
  556. guithread.start()
  557. if options.test:
  558. FREQS[0] = 440
  559. EXPIRATIONS[0] = time.time() + 1
  560. CUR_PERIODS[0] = 0.0
  561. time.sleep(1)
  562. FREQS[0] = 0
  563. time.sleep(1)
  564. FREQS[0] = 880
  565. EXPIRATIONS[0] = time.time() + 1
  566. CUR_PERIODS[0] = 0.0
  567. time.sleep(1)
  568. FREQS[0] = 440
  569. EXPIRATIONS[0] = time.time() + 2
  570. CUR_PERIODS[0] = 0.0
  571. time.sleep(2)
  572. exit()
  573. sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
  574. sock.bind(('', PORT))
  575. #signal.signal(signal.SIGALRM, sigalrm)
  576. counter = 0
  577. while True:
  578. data = ''
  579. while not data:
  580. try:
  581. data, cli = sock.recvfrom(4096)
  582. except socket.error:
  583. pass
  584. pkt = Packet.FromStr(data)
  585. inds = [' ' if f == 0 else '\x1b[1;38;2;{};{};{}m|'.format(*rgb_for_freq_amp(f, a / MAX)) for f, a in zip(FREQS, AMPS)]
  586. if pkt.cmd != CMD.PCM:
  587. crgb = [int(i*255) for i in colorsys.hls_to_rgb((float(counter) / options.counter_modulus) % 1.0, 0.5, 1.0)]
  588. print '\x1b[38;2;{};{};{}m#'.format(*crgb),
  589. counter += 1
  590. print '\x1b[m', cli, pkt.cmd,
  591. if pkt.cmd == CMD.KA:
  592. print '\x1b[37mKA', ' '.join(inds)
  593. elif pkt.cmd == CMD.PING:
  594. sock.sendto(data, cli)
  595. print '\x1b[1;33mPING', ' '.join(inds)
  596. elif pkt.cmd == CMD.QUIT:
  597. print '\x1b[1;31mQUIT', ' '.join(inds)
  598. break
  599. elif pkt.cmd == CMD.PLAY:
  600. voice = pkt.data[4]
  601. dur = pkt.data[0]+pkt.data[1]/1000000.0
  602. freq = pkt.data[2] * options.fmul
  603. if options.chorus > 0:
  604. midi = 12 * math.log(freq / 440.0, 2) + 69
  605. midi += (random.random() * 2 - 1) * options.chorus
  606. freq = 440.0 * 2 ** ((midi - 69) / 12)
  607. FREQS[voice] = freq
  608. amp = pkt.as_float(3)
  609. if options.clamp:
  610. amp = max(min(amp, 1.0), 0.0)
  611. AMPS[voice] = MAX * amp**options.amp_exp
  612. EXPIRATIONS[voice] = time.time() + dur
  613. if not (pkt.data[5] & PLF.SAMEPHASE):
  614. CUR_PERIODS[voice] = 0.0
  615. PHASES[voice] = 0.0
  616. vrgb = [int(i*255) for i in colorsys.hls_to_rgb(float(voice) / STREAMS * 2.0 / 3.0, 0.5, 1.0)]
  617. frgb = rgb_for_freq_amp(pkt.data[2], pkt.as_float(3))
  618. print '\x1b[1;32mPLAY',
  619. print '\x1b[1;38;2;{};{};{}mVOICE'.format(*vrgb), '{:03}'.format(voice),
  620. print '\x1b[1;38;2;{};{};{}mFREQ'.format(*frgb), '{:04}'.format(pkt.data[2]), 'AMP', '%08.6f'%pkt.as_float(3),
  621. inds[voice] = '\x1b[1;38;2;{};{};{}m-'.format(*frgb)
  622. print ' '.join(inds),
  623. if pkt.data[5] & PLF.SAMEPHASE:
  624. print '\x1b[1;37mSAMEPHASE',
  625. if pkt.data[0] == 0 and pkt.data[1] == 0:
  626. print '\x1b[1;31mSTOP!!!'
  627. else:
  628. print '\x1b[1;36mDUR', '%08.6f'%dur
  629. #signal.setitimer(signal.ITIMER_REAL, dur)
  630. elif pkt.cmd == CMD.CAPS:
  631. data = [0] * 8
  632. data[0] = STREAMS
  633. data[1] = stoi(IDENT)
  634. for i in xrange(len(UID)/4 + 1):
  635. data[i+2] = stoi(UID[4*i:4*(i+1)])
  636. sock.sendto(str(Packet(CMD.CAPS, *data)), cli)
  637. print '\x1b[1;34mCAPS', ' '.join(inds)
  638. elif pkt.cmd == CMD.PCM:
  639. fdata = data[4:]
  640. fdata = struct.pack('16i', *[i<<16 for i in struct.unpack('16h', fdata)])
  641. QUEUED_PCM += fdata
  642. #print 'Now', len(QUEUED_PCM) / 4.0, 'frames queued'
  643. elif pkt.cmd == CMD.PCMSYN:
  644. print '\x1b[1;37mPCMSYN',
  645. bufamt = pkt.data[0]
  646. print '\x1b[0m DESBUF={}'.format(bufamt),
  647. if LAST_SYN is None:
  648. LAST_SYN = time.time()
  649. else:
  650. dt = time.time() - LAST_SYN
  651. dfr = dt * RATE
  652. bufnow = len(QUEUED_PCM) / 4
  653. print '\x1b[35m CURBUF={}'.format(bufnow),
  654. if bufnow != 0:
  655. DRIFT_FACTOR = 1.0 + float(bufnow - bufamt) / (bufamt * dfr * options.pcm_corr_rate)
  656. print '\x1b[37m (DRIFT_FACTOR=%08.6f)'%(DRIFT_FACTOR,),
  657. print
  658. elif pkt.cmd == CMD.ARTP:
  659. print '\x1b[1;36mARTP',
  660. if pkt.data[0] == OBLIGATE_POLYPHONE:
  661. print '\x1b[1;31mGLOBAL',
  662. else:
  663. vrgb = [int(i*255) for i in colorsys.hls_to_rgb(float(pkt.data[0]) / STREAMS * 2.0 / 3.0, 0.5, 1.0)]
  664. print '\x1b[1;38;2;{};{};{}mVOICE'.format(*vrgb), '{:03}'.format(pkt.data[0]),
  665. print '\x1b[1;36mINDEX', pkt.data[1], '\x1b[1;37mVALUE', '%08.6f'%pkt.as_float(2),
  666. if pkt.data[1] >= options.narts:
  667. print '\x1b[1;31mOOB!!!',
  668. else:
  669. if pkt.data[0] == OBLIGATE_POLYPHONE:
  670. GARTS[pkt.data[1]] = pkt.as_float(2)
  671. else:
  672. VLARTS[pkt.data[0]][pkt.data[1]] = pkt.as_float(2)
  673. print
  674. else:
  675. print '\x1b[1;31mUnknown cmd', pkt.cmd