client.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. # A simple client that generates sine waves via python-pyaudio
  2. import signal
  3. import pyaudio
  4. import sys
  5. import socket
  6. import time
  7. import math
  8. import struct
  9. import socket
  10. import optparse
  11. import array
  12. import random
  13. import threading
  14. import thread
  15. import colorsys
  16. from packet import Packet, CMD, stoi
  17. parser = optparse.OptionParser()
  18. parser.add_option('-t', '--test', dest='test', action='store_true', help='Play a test sequence (440,<rest>,880,440), then exit')
  19. parser.add_option('-g', '--generator', dest='generator', default='math.sin', help='Set the generator (to a Python expression)')
  20. parser.add_option('--generators', dest='generators', action='store_true', help='Show the list of generators, then exit')
  21. parser.add_option('-u', '--uid', dest='uid', default='', help='Set the UID (identifier) of this client in the network')
  22. parser.add_option('-p', '--port', dest='port', type='int', default=13676, help='Set the port to listen on')
  23. parser.add_option('-r', '--rate', dest='rate', type='int', default=44100, help='Set the sample rate of the audio device')
  24. parser.add_option('-V', '--volume', dest='volume', type='float', default=1.0, help='Set the volume factor (>1 distorts, <1 attenuates)')
  25. parser.add_option('-n', '--streams', dest='streams', type='int', default=1, help='Set the number of streams this client will play back')
  26. parser.add_option('-N', '--numpy', dest='numpy', action='store_true', help='Use numpy acceleration')
  27. parser.add_option('-G', '--gui', dest='gui', default='', help='set a GUI to use')
  28. parser.add_option('--pg-fullscreen', dest='fullscreen', action='store_true', help='Use a full-screen video mode')
  29. parser.add_option('--pg-samp-width', dest='samp_width', type='int', help='Set the width of the sample pane (by default display width / 2)')
  30. parser.add_option('--pg-bgr-width', dest='bgr_width', type='int', help='Set the width of the bargraph pane (by default display width / 2)')
  31. parser.add_option('--pg-height', dest='height', type='int', help='Set the height of the window or full-screen video mode')
  32. parser.add_option('--pg-no-colback', dest='no_colback', action='store_true', help='Don\'t render a colored background')
  33. parser.add_option('--pg-low-freq', dest='low_freq', type='int', default=40, help='Low frequency for colored background')
  34. parser.add_option('--pg-high-freq', dest='high_freq', type='int', default=1500, help='High frequency for colored background')
  35. parser.add_option('--pg-log-base', dest='log_base', type='int', default=2, help='Logarithmic base for coloring (0 to make linear)')
  36. parser.add_option('--counter-modulus', dest='counter_modulus', type='int', default=16, help='Number of packet events in period of the terminal color scroll on the left margin')
  37. options, args = parser.parse_args()
  38. if options.numpy:
  39. import numpy
  40. PORT = options.port
  41. STREAMS = options.streams
  42. IDENT = 'TONE'
  43. UID = options.uid
  44. LAST_SAMPS = [0] * STREAMS
  45. LAST_SAMPLES = []
  46. FREQS = [0] * STREAMS
  47. PHASES = [0] * STREAMS
  48. RATE = options.rate
  49. FPB = 64
  50. Z_SAMP = '\x00\x00\x00\x00'
  51. MAX = 0x7fffffff
  52. AMPS = [MAX] * STREAMS
  53. MIN = -0x80000000
  54. EXPIRATIONS = [0] * STREAMS
  55. QUEUED_PCM = ''
  56. def lin_interp(frm, to, p):
  57. return p*to + (1-p)*frm
  58. def rgb_for_freq_amp(f, a):
  59. pitchval = float(f - options.low_freq) / (options.high_freq - options.low_freq)
  60. if options.log_base == 0:
  61. try:
  62. pitchval = math.log(pitchval) / math.log(options.log_base)
  63. except ValueError:
  64. pass
  65. bgcol = colorsys.hls_to_rgb(min((1.0, max((0.0, pitchval)))), 0.5 * (a ** 2), 1.0)
  66. return [int(i*255) for i in bgcol]
  67. # GUIs
  68. GUIs = {}
  69. def GUI(f):
  70. GUIs[f.__name__] = f
  71. return f
  72. @GUI
  73. def pygame_notes():
  74. import pygame
  75. import pygame.gfxdraw
  76. pygame.init()
  77. dispinfo = pygame.display.Info()
  78. DISP_WIDTH = 640
  79. DISP_HEIGHT = 480
  80. if dispinfo.current_h > 0 and dispinfo.current_w > 0:
  81. DISP_WIDTH = dispinfo.current_w
  82. DISP_HEIGHT = dispinfo.current_h
  83. SAMP_WIDTH = DISP_WIDTH / 2
  84. if options.samp_width > 0:
  85. SAMP_WIDTH = options.samp_width
  86. BGR_WIDTH = DISP_WIDTH / 2
  87. if options.bgr_width > 0:
  88. BGR_WIDTH = options.bgr_width
  89. HEIGHT = DISP_HEIGHT
  90. if options.height > 0:
  91. HEIGHT = options.height
  92. flags = 0
  93. if options.fullscreen:
  94. flags |= pygame.FULLSCREEN
  95. disp = pygame.display.set_mode((SAMP_WIDTH + BGR_WIDTH, HEIGHT), flags)
  96. WIDTH, HEIGHT = disp.get_size()
  97. SAMP_WIDTH = WIDTH / 2
  98. BGR_WIDTH = WIDTH - SAMP_WIDTH
  99. PFAC = HEIGHT / 128.0
  100. sampwin = pygame.Surface((SAMP_WIDTH, HEIGHT))
  101. sampwin.set_colorkey((0, 0, 0))
  102. lastsy = HEIGHT / 2
  103. bgrwin = pygame.Surface((BGR_WIDTH, HEIGHT))
  104. bgrwin.set_colorkey((0, 0, 0))
  105. clock = pygame.time.Clock()
  106. while True:
  107. if options.no_colback:
  108. disp.fill((0, 0, 0), (0, 0, WIDTH, HEIGHT))
  109. else:
  110. gap = WIDTH / STREAMS
  111. for i in xrange(STREAMS):
  112. FREQ = FREQS[i]
  113. AMP = AMPS[i]
  114. if FREQ > 0:
  115. bgcol = rgb_for_freq_amp(FREQ, float(AMP) / MAX)
  116. else:
  117. bgcol = (0, 0, 0)
  118. #print i, ':', pitchval
  119. disp.fill(bgcol, (i*gap, 0, gap, HEIGHT))
  120. bgrwin.scroll(-1, 0)
  121. bgrwin.fill((0, 0, 0), (BGR_WIDTH - 1, 0, 1, HEIGHT))
  122. for i in xrange(STREAMS):
  123. FREQ = FREQS[i]
  124. AMP = AMPS[i]
  125. if FREQ > 0:
  126. try:
  127. pitch = 12 * math.log(FREQ / 440.0, 2) + 69
  128. except ValueError:
  129. pitch = 0
  130. else:
  131. pitch = 0
  132. col = [int((AMP / MAX) * 255)] * 3
  133. bgrwin.fill(col, (BGR_WIDTH - 1, HEIGHT - pitch * PFAC - PFAC, 1, PFAC))
  134. sampwin.scroll(-len(LAST_SAMPLES), 0)
  135. x = max(0, SAMP_WIDTH - len(LAST_SAMPLES))
  136. sampwin.fill((0, 0, 0), (x, 0, SAMP_WIDTH - x, HEIGHT))
  137. for i in LAST_SAMPLES:
  138. sy = int((float(i) / MAX) * (HEIGHT / 2) + (HEIGHT / 2))
  139. pygame.gfxdraw.line(sampwin, x - 1, lastsy, x, sy, (0, 255, 0))
  140. x += 1
  141. lastsy = sy
  142. del LAST_SAMPLES[:]
  143. #w, h = SAMP_WIDTH, HEIGHT
  144. #pts = [(BGR_WIDTH, HEIGHT / 2), (w + BGR_WIDTH, HEIGHT / 2)]
  145. #x = w + BGR_WIDTH
  146. #for i in reversed(LAST_SAMPLES):
  147. # pts.insert(1, (x, int((h / 2) + (float(i) / MAX) * (h / 2))))
  148. # x -= 1
  149. # if x < BGR_WIDTH:
  150. # break
  151. #if len(pts) > 2:
  152. # pygame.gfxdraw.aapolygon(disp, pts, [0, 255, 0])
  153. disp.blit(bgrwin, (0, 0))
  154. disp.blit(sampwin, (BGR_WIDTH, 0))
  155. pygame.display.flip()
  156. for ev in pygame.event.get():
  157. if ev.type == pygame.KEYDOWN:
  158. if ev.key == pygame.K_ESCAPE:
  159. thread.interrupt_main()
  160. pygame.quit()
  161. exit()
  162. elif ev.type == pygame.QUIT:
  163. thread.interrupt_main()
  164. pygame.quit()
  165. exit()
  166. clock.tick(60)
  167. # Generator functions--should be cyclic within [0, 2*math.pi) and return [-1, 1]
  168. GENERATORS = [{'name': 'math.sin', 'args': None, 'desc': 'Sine function'},
  169. {'name':'math.cos', 'args': None, 'desc': 'Cosine function'}]
  170. def generator(desc=None, args=None):
  171. def inner(f, desc=desc, args=args):
  172. if desc is None:
  173. desc = f.__doc__
  174. GENERATORS.append({'name': f.__name__, 'desc': desc, 'args': args})
  175. return f
  176. return inner
  177. @generator('Simple triangle wave (peaks/troughs at pi/2, 3pi/2)')
  178. def tri_wave(theta):
  179. if theta < math.pi/2:
  180. return lin_interp(0, 1, theta/(math.pi/2))
  181. elif theta < 3*math.pi/2:
  182. return lin_interp(1, -1, (theta-math.pi/2)/math.pi)
  183. else:
  184. return lin_interp(-1, 0, (theta-3*math.pi/2)/(math.pi/2))
  185. @generator('Saw wave (line from (0, 1) to (2pi, -1))')
  186. def saw_wave(theta):
  187. return lin_interp(1, -1, theta/(math.pi * 2))
  188. @generator('Simple square wave (piecewise 1 at x<pi, 0 else)')
  189. def square_wave(theta):
  190. if theta < math.pi:
  191. return 1
  192. else:
  193. return -1
  194. @generator('Random (noise) generator')
  195. def noise(theta):
  196. return random.random() * 2 - 1
  197. @generator('File generator', '(<file>[, <bits=8>[, <signed=True>[, <0=linear interp (default), 1=nearest>[, <swapbytes=False>]]]])')
  198. class file_samp(object):
  199. LINEAR = 0
  200. NEAREST = 1
  201. TYPES = {8: 'B', 16: 'H', 32: 'L'}
  202. def __init__(self, fname, bits=8, signed=True, samp=LINEAR, swab=False):
  203. tp = self.TYPES[bits]
  204. if signed:
  205. tp = tp.lower()
  206. self.max = float((2 << bits) - 1)
  207. self.buffer = array.array(tp)
  208. self.buffer.fromstring(open(fname, 'rb').read())
  209. if swab:
  210. self.buffer.byteswap()
  211. self.samp = samp
  212. def __call__(self, theta):
  213. norm = theta / (2*math.pi)
  214. if self.samp == self.LINEAR:
  215. v = norm*len(self.buffer)
  216. l = int(math.floor(v))
  217. h = int(math.ceil(v))
  218. if l == h:
  219. return self.buffer[l]/self.max
  220. if h >= len(self.buffer):
  221. h = 0
  222. return lin_interp(self.buffer[l], self.buffer[h], v-l)/self.max
  223. elif self.samp == self.NEAREST:
  224. return self.buffer[int(math.ceil(norm*len(self.buffer) - 0.5))]/self.max
  225. @generator('Harmonics generator (adds overtones at f, 2f, 3f, 4f, etc.)', '(<generator>, <amplitude of f>, <amp 2f>, <amp 3f>, ...)')
  226. class harmonic(object):
  227. def __init__(self, gen, *spectrum):
  228. self.gen = gen
  229. self.spectrum = spectrum
  230. def __call__(self, theta):
  231. return max(-1, min(1, sum([amp*self.gen((i+1)*theta % (2*math.pi)) for i, amp in enumerate(self.spectrum)])))
  232. @generator('General harmonics generator (adds arbitrary overtones)', '(<generator>, <factor of f>, <amplitude>, <factor>, <amplitude>, ...)')
  233. class genharmonic(object):
  234. def __init__(self, gen, *harmonics):
  235. self.gen = gen
  236. self.harmonics = zip(harmonics[::2], harmonics[1::2])
  237. def __call__(self, theta):
  238. return max(-1, min(1, sum([amp * self.gen(i * theta % (2*math.pi)) for i, amp in self.harmonics])))
  239. @generator('Mix generator', '(<generator>[, <amp>], [<generator>[, <amp>], [...]])')
  240. class mixer(object):
  241. def __init__(self, *specs):
  242. self.pairs = []
  243. i = 0
  244. while i < len(specs):
  245. if i+1 < len(specs) and isinstance(specs[i+1], (float, int)):
  246. pair = (specs[i], specs[i+1])
  247. i += 2
  248. else:
  249. pair = (specs[i], None)
  250. i += 1
  251. self.pairs.append(pair)
  252. tamp = 1 - min(1, sum([amp for gen, amp in self.pairs if amp is not None]))
  253. parts = float(len([None for gen, amp in self.pairs if amp is None]))
  254. for idx, pair in enumerate(self.pairs):
  255. if pair[1] is None:
  256. self.pairs[idx] = (pair[0], tamp / parts)
  257. def __call__(self, theta):
  258. return max(-1, min(1, sum([amp*gen(theta) for gen, amp in self.pairs])))
  259. @generator('Phase offset generator (in radians; use math.pi)', '(<generator>, <offset>)')
  260. class phase_off(object):
  261. def __init__(self, gen, offset):
  262. self.gen = gen
  263. self.offset = offset
  264. def __call__(self, theta):
  265. return self.gen((theta + self.offset) % (2*math.pi))
  266. if options.generators:
  267. for item in GENERATORS:
  268. print item['name'],
  269. if item['args'] is not None:
  270. print item['args'],
  271. print '--', item['desc']
  272. exit()
  273. #generator = math.sin
  274. #generator = tri_wave
  275. #generator = square_wave
  276. generator = eval(options.generator)
  277. #def sigalrm(sig, frm):
  278. # global FREQ
  279. # FREQ = 0
  280. if options.numpy:
  281. def lin_seq(frm, to, cnt):
  282. return numpy.linspace(frm, to, cnt, dtype=numpy.int32)
  283. def samps(freq, amp, phase, cnt):
  284. samps = numpy.ndarray((cnt,), numpy.int32)
  285. pvel = 2 * math.pi * freq / RATE
  286. fac = options.volume * amp / float(STREAMS)
  287. for i in xrange(cnt):
  288. samps[i] = fac * max(-1, min(1, generator(phase)))
  289. phase = (phase + pvel) % (2 * math.pi)
  290. return samps, phase
  291. def to_data(samps):
  292. return samps.tobytes()
  293. def mix(a, b):
  294. return a + b
  295. else:
  296. def lin_seq(frm, to, cnt):
  297. step = (to-frm)/float(cnt)
  298. samps = [0]*cnt
  299. for i in xrange(cnt):
  300. p = i / float(cnt-1)
  301. samps[i] = int(lin_interp(frm, to, p))
  302. return samps
  303. def samps(freq, amp, phase, cnt):
  304. global RATE
  305. samps = [0]*cnt
  306. for i in xrange(cnt):
  307. samps[i] = int(2*amp / float(STREAMS) * max(-1, min(1, options.volume*generator((phase + 2 * math.pi * freq * i / RATE) % (2*math.pi)))))
  308. return samps, (phase + 2 * math.pi * freq * cnt / RATE) % (2*math.pi)
  309. def to_data(samps):
  310. return struct.pack('i'*len(samps), *samps)
  311. def mix(a, b):
  312. return [min(MAX, max(MIN, i + j)) for i, j in zip(a, b)]
  313. def gen_data(data, frames, tm, status):
  314. global FREQS, PHASE, Z_SAMP, LAST_SAMP, LAST_SAMPLES, QUEUED_PCM
  315. if len(QUEUED_PCM) >= frames*4:
  316. fdata = QUEUED_PCM[:frames*4]
  317. QUEUED_PCM = QUEUED_PCM[frames*4:]
  318. LAST_SAMPLES.extend(struct.unpack(str(frames)+'i', fdata))
  319. return fdata, pyaudio.paContinue
  320. if options.numpy:
  321. fdata = numpy.zeros((frames,), numpy.int32)
  322. else:
  323. fdata = [0] * frames
  324. for i in range(STREAMS):
  325. FREQ = FREQS[i]
  326. LAST_SAMP = LAST_SAMPS[i]
  327. AMP = AMPS[i]
  328. EXPIRATION = EXPIRATIONS[i]
  329. PHASE = PHASES[i]
  330. if FREQ != 0:
  331. if time.time() > EXPIRATION:
  332. FREQ = 0
  333. FREQS[i] = 0
  334. if FREQ == 0:
  335. PHASES[i] = 0
  336. if LAST_SAMP != 0:
  337. vdata = lin_seq(LAST_SAMP, 0, frames)
  338. fdata = mix(fdata, vdata)
  339. LAST_SAMPS[i] = vdata[-1]
  340. else:
  341. vdata, PHASE = samps(FREQ, AMP, PHASE, frames)
  342. fdata = mix(fdata, vdata)
  343. PHASES[i] = PHASE
  344. LAST_SAMPS[i] = vdata[-1]
  345. if options.gui:
  346. LAST_SAMPLES.extend(fdata)
  347. return (to_data(fdata), pyaudio.paContinue)
  348. pa = pyaudio.PyAudio()
  349. stream = pa.open(rate=RATE, channels=1, format=pyaudio.paInt32, output=True, frames_per_buffer=FPB, stream_callback=gen_data)
  350. if options.gui:
  351. guithread = threading.Thread(target=GUIs[options.gui])
  352. guithread.setDaemon(True)
  353. guithread.start()
  354. if options.test:
  355. FREQS[0] = 440
  356. EXPIRATIONS[0] = time.time() + 1
  357. time.sleep(1)
  358. FREQS[0] = 0
  359. time.sleep(1)
  360. FREQS[0] = 880
  361. EXPIRATIONS[0] = time.time() + 1
  362. time.sleep(1)
  363. FREQS[0] = 440
  364. EXPIRATIONS[0] = time.time() + 2
  365. time.sleep(2)
  366. exit()
  367. sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
  368. sock.bind(('', PORT))
  369. #signal.signal(signal.SIGALRM, sigalrm)
  370. counter = 0
  371. while True:
  372. data = ''
  373. while not data:
  374. try:
  375. data, cli = sock.recvfrom(4096)
  376. except socket.error:
  377. pass
  378. pkt = Packet.FromStr(data)
  379. crgb = [int(i*255) for i in colorsys.hls_to_rgb((float(counter) / options.counter_modulus) % 1.0, 0.5, 1.0)]
  380. print '\x1b[38;2;{};{};{}m#'.format(*crgb),
  381. counter += 1
  382. print '\x1b[mFrom', cli, 'command', pkt.cmd,
  383. if pkt.cmd == CMD.KA:
  384. print '\x1b[37mKA'
  385. elif pkt.cmd == CMD.PING:
  386. sock.sendto(data, cli)
  387. print '\x1b[1;33mPING'
  388. elif pkt.cmd == CMD.QUIT:
  389. print '\x1b[1;31mQUIT'
  390. break
  391. elif pkt.cmd == CMD.PLAY:
  392. voice = pkt.data[4]
  393. dur = pkt.data[0]+pkt.data[1]/1000000.0
  394. FREQS[voice] = pkt.data[2]
  395. AMPS[voice] = MAX * max(min(pkt.as_float(3), 1.0), 0.0)
  396. EXPIRATIONS[voice] = time.time() + dur
  397. vrgb = [int(i*255) for i in colorsys.hls_to_rgb(float(voice) / STREAMS * 2.0 / 3.0, 0.5, 1.0)]
  398. frgb = rgb_for_freq_amp(pkt.data[2], pkt.as_float(3))
  399. print '\x1b[1;32mPLAY',
  400. print '\x1b[1;38;2;{};{};{}mVOICE'.format(*vrgb), '{:03}'.format(voice),
  401. print '\x1b[1;38;2;{};{};{}mFREQ'.format(*frgb), '{:04}'.format(pkt.data[2]), 'AMP', '%08.6f'%pkt.as_float(3),
  402. if pkt.data[0] == 0 and pkt.data[1] == 0:
  403. print '\x1b[1;35mSTOP!!!'
  404. else:
  405. print '\x1b[1;36mDUR', '%08.6f'%dur
  406. #signal.setitimer(signal.ITIMER_REAL, dur)
  407. elif pkt.cmd == CMD.CAPS:
  408. data = [0] * 8
  409. data[0] = STREAMS
  410. data[1] = stoi(IDENT)
  411. for i in xrange(len(UID)/4 + 1):
  412. data[i+2] = stoi(UID[4*i:4*(i+1)])
  413. sock.sendto(str(Packet(CMD.CAPS, *data)), cli)
  414. print '\x1b[1;34mCAPS'
  415. elif pkt.cmd == CMD.PCM:
  416. fdata = data[4:]
  417. fdata = struct.pack('16i', *[i<<16 for i in struct.unpack('16h', fdata)])
  418. QUEUED_PCM += fdata
  419. print 'Now', len(QUEUED_PCM) / 4.0, 'frames queued'
  420. else:
  421. print 'Unknown cmd', pkt.cmd