client.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. # A simple client that generates sine waves via python-pyaudio
  2. import signal
  3. import pyaudio
  4. import sys
  5. import socket
  6. import time
  7. import math
  8. import struct
  9. import socket
  10. import optparse
  11. import array
  12. import random
  13. import threading
  14. import thread
  15. import colorsys
  16. from packet import Packet, CMD, PLF, stoi
  17. parser = optparse.OptionParser()
  18. parser.add_option('-t', '--test', dest='test', action='store_true', help='Play a test sequence (440,<rest>,880,440), then exit')
  19. parser.add_option('-g', '--generator', dest='generator', default='math.sin', help='Set the generator (to a Python expression)')
  20. parser.add_option('--generators', dest='generators', action='store_true', help='Show the list of generators, then exit')
  21. parser.add_option('-u', '--uid', dest='uid', default='', help='Set the UID (identifier) of this client in the network')
  22. parser.add_option('-p', '--port', dest='port', type='int', default=13676, help='Set the port to listen on')
  23. parser.add_option('-r', '--rate', dest='rate', type='int', default=44100, help='Set the sample rate of the audio device')
  24. parser.add_option('-V', '--volume', dest='volume', type='float', default=1.0, help='Set the volume factor (>1 distorts, <1 attenuates)')
  25. parser.add_option('-n', '--streams', dest='streams', type='int', default=1, help='Set the number of streams this client will play back')
  26. parser.add_option('-N', '--numpy', dest='numpy', action='store_true', help='Use numpy acceleration')
  27. parser.add_option('-G', '--gui', dest='gui', default='', help='set a GUI to use')
  28. parser.add_option('-c', '--clamp', dest='clamp', action='store_true', help='Clamp over-the-wire amplitudes to 0.0-1.0')
  29. parser.add_option('-C', '--chorus', dest='chorus', default=0.0, type='float', help='Apply uniform random offsets (in MIDI pitch space)')
  30. parser.add_option('--vibrato', dest='vibrato', default=0.0, type='float', help='Apply periodic perturbances in pitch space by this amplitude (in MIDI pitches)')
  31. parser.add_option('--vibrato-freq', dest='vibrato_freq', default=6.0, type='float', help='Frequency of the vibrato perturbances in Hz')
  32. parser.add_option('--pg-fullscreen', dest='fullscreen', action='store_true', help='Use a full-screen video mode')
  33. parser.add_option('--pg-samp-width', dest='samp_width', type='int', help='Set the width of the sample pane (by default display width / 2)')
  34. parser.add_option('--pg-bgr-width', dest='bgr_width', type='int', help='Set the width of the bargraph pane (by default display width / 2)')
  35. parser.add_option('--pg-height', dest='height', type='int', help='Set the height of the window or full-screen video mode')
  36. parser.add_option('--pg-no-colback', dest='no_colback', action='store_true', help='Don\'t render a colored background')
  37. parser.add_option('--pg-low-freq', dest='low_freq', type='int', default=40, help='Low frequency for colored background')
  38. parser.add_option('--pg-high-freq', dest='high_freq', type='int', default=1500, help='High frequency for colored background')
  39. parser.add_option('--pg-log-base', dest='log_base', type='int', default=2, help='Logarithmic base for coloring (0 to make linear)')
  40. parser.add_option('--counter-modulus', dest='counter_modulus', type='int', default=16, help='Number of packet events in period of the terminal color scroll on the left margin')
  41. parser.add_option('--pcm-corr-rate', dest='pcm_corr_rate', type='float', default=0.05, help='Amount of time to correct buffer drift, measured as percentage of the current sync rate')
  42. options, args = parser.parse_args()
  43. if options.numpy:
  44. import numpy
  45. PORT = options.port
  46. STREAMS = options.streams
  47. IDENT = 'TONE'
  48. UID = options.uid
  49. LAST_SAMPS = [0] * STREAMS
  50. LAST_SAMPLES = []
  51. FREQS = [0] * STREAMS
  52. PHASES = [0] * STREAMS
  53. RATE = options.rate
  54. FPB = 64
  55. Z_SAMP = '\x00\x00\x00\x00'
  56. MAX = 0x7fffffff
  57. AMPS = [MAX] * STREAMS
  58. MIN = -0x80000000
  59. EXPIRATIONS = [0] * STREAMS
  60. QUEUED_PCM = ''
  61. DRIFT_FACTOR = 1.0
  62. DRIFT_ERROR = 0.0
  63. LAST_SYN = None
  64. def lin_interp(frm, to, p):
  65. return p*to + (1-p)*frm
  66. def rgb_for_freq_amp(f, a):
  67. a = max((min((a, 1.0)), 0.0))
  68. pitchval = float(f - options.low_freq) / (options.high_freq - options.low_freq)
  69. if options.log_base == 0:
  70. try:
  71. pitchval = math.log(pitchval) / math.log(options.log_base)
  72. except ValueError:
  73. pass
  74. bgcol = colorsys.hls_to_rgb(min((1.0, max((0.0, pitchval)))), 0.5 * (a ** 2), 1.0)
  75. return [int(i*255) for i in bgcol]
  76. # GUIs
  77. GUIs = {}
  78. def GUI(f):
  79. GUIs[f.__name__] = f
  80. return f
  81. @GUI
  82. def pygame_notes():
  83. import pygame
  84. import pygame.gfxdraw
  85. pygame.init()
  86. dispinfo = pygame.display.Info()
  87. DISP_WIDTH = 640
  88. DISP_HEIGHT = 480
  89. if dispinfo.current_h > 0 and dispinfo.current_w > 0:
  90. DISP_WIDTH = dispinfo.current_w
  91. DISP_HEIGHT = dispinfo.current_h
  92. SAMP_WIDTH = DISP_WIDTH / 2
  93. if options.samp_width > 0:
  94. SAMP_WIDTH = options.samp_width
  95. BGR_WIDTH = DISP_WIDTH / 2
  96. if options.bgr_width > 0:
  97. BGR_WIDTH = options.bgr_width
  98. HEIGHT = DISP_HEIGHT
  99. if options.height > 0:
  100. HEIGHT = options.height
  101. flags = 0
  102. if options.fullscreen:
  103. flags |= pygame.FULLSCREEN
  104. disp = pygame.display.set_mode((SAMP_WIDTH + BGR_WIDTH, HEIGHT), flags)
  105. WIDTH, HEIGHT = disp.get_size()
  106. SAMP_WIDTH = WIDTH / 2
  107. BGR_WIDTH = WIDTH - SAMP_WIDTH
  108. PFAC = HEIGHT / 128.0
  109. sampwin = pygame.Surface((SAMP_WIDTH, HEIGHT))
  110. sampwin.set_colorkey((0, 0, 0))
  111. lastsy = HEIGHT / 2
  112. bgrwin = pygame.Surface((BGR_WIDTH, HEIGHT))
  113. bgrwin.set_colorkey((0, 0, 0))
  114. clock = pygame.time.Clock()
  115. font = pygame.font.SysFont(pygame.font.get_default_font(), 24)
  116. while True:
  117. if options.no_colback:
  118. disp.fill((0, 0, 0), (0, 0, WIDTH, HEIGHT))
  119. else:
  120. gap = WIDTH / STREAMS
  121. for i in xrange(STREAMS):
  122. FREQ = FREQS[i]
  123. AMP = AMPS[i]
  124. if FREQ > 0:
  125. bgcol = rgb_for_freq_amp(FREQ, float(AMP) / MAX)
  126. else:
  127. bgcol = (0, 0, 0)
  128. #print i, ':', pitchval
  129. disp.fill(bgcol, (i*gap, 0, gap, HEIGHT))
  130. bgrwin.scroll(-1, 0)
  131. bgrwin.fill((0, 0, 0), (BGR_WIDTH - 1, 0, 1, HEIGHT))
  132. for i in xrange(STREAMS):
  133. FREQ = FREQS[i]
  134. AMP = AMPS[i]
  135. if FREQ > 0:
  136. try:
  137. pitch = 12 * math.log(FREQ / 440.0, 2) + 69
  138. except ValueError:
  139. pitch = 0
  140. else:
  141. pitch = 0
  142. col = [int((AMP / MAX) * 255)] * 3
  143. bgrwin.fill(col, (BGR_WIDTH - 1, HEIGHT - pitch * PFAC - PFAC, 1, PFAC))
  144. sampwin.scroll(-len(LAST_SAMPLES), 0)
  145. x = max(0, SAMP_WIDTH - len(LAST_SAMPLES))
  146. sampwin.fill((0, 0, 0), (x, 0, SAMP_WIDTH - x, HEIGHT))
  147. for i in LAST_SAMPLES:
  148. sy = int((float(i) / MAX) * (HEIGHT / 2) + (HEIGHT / 2))
  149. pygame.gfxdraw.line(sampwin, x - 1, lastsy, x, sy, (0, 255, 0))
  150. x += 1
  151. lastsy = sy
  152. del LAST_SAMPLES[:]
  153. #w, h = SAMP_WIDTH, HEIGHT
  154. #pts = [(BGR_WIDTH, HEIGHT / 2), (w + BGR_WIDTH, HEIGHT / 2)]
  155. #x = w + BGR_WIDTH
  156. #for i in reversed(LAST_SAMPLES):
  157. # pts.insert(1, (x, int((h / 2) + (float(i) / MAX) * (h / 2))))
  158. # x -= 1
  159. # if x < BGR_WIDTH:
  160. # break
  161. #if len(pts) > 2:
  162. # pygame.gfxdraw.aapolygon(disp, pts, [0, 255, 0])
  163. disp.blit(bgrwin, (0, 0))
  164. disp.blit(sampwin, (BGR_WIDTH, 0))
  165. if QUEUED_PCM:
  166. tsurf = font.render('%+011.6g'%(DRIFT_FACTOR - 1,), True, (255, 255, 255), (0, 0, 0))
  167. disp.fill((0, 0, 0), tsurf.get_rect())
  168. disp.blit(tsurf, (0, 0))
  169. pygame.display.flip()
  170. for ev in pygame.event.get():
  171. if ev.type == pygame.KEYDOWN:
  172. if ev.key == pygame.K_ESCAPE:
  173. thread.interrupt_main()
  174. pygame.quit()
  175. exit()
  176. elif ev.type == pygame.QUIT:
  177. thread.interrupt_main()
  178. pygame.quit()
  179. exit()
  180. clock.tick(60)
  181. # Generator functions--should be cyclic within [0, 2*math.pi) and return [-1, 1]
  182. GENERATORS = [{'name': 'math.sin', 'args': None, 'desc': 'Sine function'},
  183. {'name':'math.cos', 'args': None, 'desc': 'Cosine function'}]
  184. def generator(desc=None, args=None):
  185. def inner(f, desc=desc, args=args):
  186. if desc is None:
  187. desc = f.__doc__
  188. GENERATORS.append({'name': f.__name__, 'desc': desc, 'args': args})
  189. return f
  190. return inner
  191. @generator('Simple triangle wave (peaks/troughs at pi/2, 3pi/2)')
  192. def tri_wave(theta):
  193. if theta < math.pi/2:
  194. return lin_interp(0, 1, theta/(math.pi/2))
  195. elif theta < 3*math.pi/2:
  196. return lin_interp(1, -1, (theta-math.pi/2)/math.pi)
  197. else:
  198. return lin_interp(-1, 0, (theta-3*math.pi/2)/(math.pi/2))
  199. @generator('Saw wave (line from (0, 1) to (2pi, -1))')
  200. def saw_wave(theta):
  201. return lin_interp(1, -1, theta/(math.pi * 2))
  202. @generator('Simple square wave (piecewise 1 at x<pi, 0 else)')
  203. def square_wave(theta):
  204. if theta < math.pi:
  205. return 1
  206. else:
  207. return -1
  208. @generator('Random (noise) generator')
  209. def noise(theta):
  210. return random.random() * 2 - 1
  211. @generator('File generator', '(<file>[, <bits=8>[, <signed=True>[, <0=linear interp (default), 1=nearest>[, <swapbytes=False>]]]])')
  212. class file_samp(object):
  213. LINEAR = 0
  214. NEAREST = 1
  215. TYPES = {8: 'B', 16: 'H', 32: 'L'}
  216. def __init__(self, fname, bits=8, signed=True, samp=LINEAR, swab=False):
  217. tp = self.TYPES[bits]
  218. if signed:
  219. tp = tp.lower()
  220. self.max = float((2 << bits) - 1)
  221. self.buffer = array.array(tp)
  222. self.buffer.fromstring(open(fname, 'rb').read())
  223. if swab:
  224. self.buffer.byteswap()
  225. self.samp = samp
  226. def __call__(self, theta):
  227. norm = theta / (2*math.pi)
  228. if self.samp == self.LINEAR:
  229. v = norm*len(self.buffer)
  230. l = int(math.floor(v))
  231. h = int(math.ceil(v))
  232. if l == h:
  233. return self.buffer[l]/self.max
  234. if h >= len(self.buffer):
  235. h = 0
  236. return lin_interp(self.buffer[l], self.buffer[h], v-l)/self.max
  237. elif self.samp == self.NEAREST:
  238. return self.buffer[int(math.ceil(norm*len(self.buffer) - 0.5))]/self.max
  239. @generator('Harmonics generator (adds overtones at f, 2f, 3f, 4f, etc.)', '(<generator>, <amplitude of f>, <amp 2f>, <amp 3f>, ...)')
  240. class harmonic(object):
  241. def __init__(self, gen, *spectrum):
  242. self.gen = gen
  243. self.spectrum = spectrum
  244. def __call__(self, theta):
  245. return max(-1, min(1, sum([amp*self.gen((i+1)*theta % (2*math.pi)) for i, amp in enumerate(self.spectrum)])))
  246. @generator('General harmonics generator (adds arbitrary overtones)', '(<generator>, <factor of f>, <amplitude>, <factor>, <amplitude>, ...)')
  247. class genharmonic(object):
  248. def __init__(self, gen, *harmonics):
  249. self.gen = gen
  250. self.harmonics = zip(harmonics[::2], harmonics[1::2])
  251. def __call__(self, theta):
  252. return max(-1, min(1, sum([amp * self.gen(i * theta % (2*math.pi)) for i, amp in self.harmonics])))
  253. @generator('Mix generator', '(<generator>[, <amp>], [<generator>[, <amp>], [...]])')
  254. class mixer(object):
  255. def __init__(self, *specs):
  256. self.pairs = []
  257. i = 0
  258. while i < len(specs):
  259. if i+1 < len(specs) and isinstance(specs[i+1], (float, int)):
  260. pair = (specs[i], specs[i+1])
  261. i += 2
  262. else:
  263. pair = (specs[i], None)
  264. i += 1
  265. self.pairs.append(pair)
  266. tamp = 1 - min(1, sum([amp for gen, amp in self.pairs if amp is not None]))
  267. parts = float(len([None for gen, amp in self.pairs if amp is None]))
  268. for idx, pair in enumerate(self.pairs):
  269. if pair[1] is None:
  270. self.pairs[idx] = (pair[0], tamp / parts)
  271. def __call__(self, theta):
  272. return max(-1, min(1, sum([amp*gen(theta) for gen, amp in self.pairs])))
  273. @generator('Phase offset generator (in radians; use math.pi)', '(<generator>, <offset>)')
  274. class phase_off(object):
  275. def __init__(self, gen, offset):
  276. self.gen = gen
  277. self.offset = offset
  278. def __call__(self, theta):
  279. return self.gen((theta + self.offset) % (2*math.pi))
  280. @generator('Normally distributed random-inversion square waves (chorus effect)', '(<sigma>)')
  281. class nd_square_wave(object):
  282. def __init__(self, sig):
  283. self.sig = sig
  284. self.invt = 0
  285. self.lastp = 2*math.pi
  286. def __call__(self, theta):
  287. if theta < self.lastp:
  288. self.invt = random.normalvariate(math.pi, self.sig)
  289. self.lastp = theta
  290. return -1 if theta < self.invt else 1
  291. @generator('Normally distributed random-point triangle waves (chorus effect)', '(<sigma>)')
  292. class nd_tri_wave(object):
  293. def __init__(self, sig):
  294. self.sig = sig
  295. self.p1 = 0.5*math.pi
  296. self.p2 = 1.5*math.pi
  297. self.lastp = 2*math.pi
  298. def __call__(self, theta):
  299. if theta < self.lastp:
  300. self.p1 = random.normalvariate(0.5*math.pi, self.sig)
  301. self.p2 = random.normalvariate(1.5*math.pi, self.sig)
  302. self.lastp = theta
  303. if theta < self.p1:
  304. return lin_interp(0, 1, theta / self.p1)
  305. elif theta < self.p2:
  306. return lin_interp(1, -1, (theta - self.p1) / (self.p2 - self.p1))
  307. else:
  308. return lin_interp(-1, 0, (theta - self.p2) / (2*math.pi - self.p2))
  309. @generator('Random phase offset', '(<generator>, <noise factor>)')
  310. class rand_phase_off(object):
  311. def __init__(self, gen, fac):
  312. self.gen = gen
  313. self.fac = fac
  314. def __call__(self, theta):
  315. return self.gen((theta + self.fac * random.random()) % (2*math.pi))
  316. @generator('Infinite Impulse Response low pass filter', '(<generator>, <RC normalized to dt=1 sample>)')
  317. class lowpass(object):
  318. def __init__(self, gen, rc):
  319. self.gen = gen
  320. self.alpha = 1.0 / (rc + 1)
  321. self.last = 0
  322. def __call__(self, theta):
  323. self.last += self.alpha * (self.gen(theta) - self.last)
  324. return self.last
  325. @generator('Infinite Impulse Response high pass filter', '(<generator>, <RC normalized to dt=1 sample>)')
  326. class highpass(object):
  327. def __init__(self, gen, rc):
  328. self.gen = gen
  329. self.alpha = rc / (rc + 1.0)
  330. self.last = 0
  331. self.lastx = 0
  332. def __call__(self, theta):
  333. x = self.gen(theta)
  334. self.last = self.alpha * (self.last + x - self.lastx)
  335. self.lastx = x
  336. return self.last
  337. @generator('Applies a function to itself repeatedly; often used with filters', '(<times>, <func>, <inner>, <extra arg 1>, <extra arg 2>, ...)')
  338. def order(n, f, i, *args):
  339. cur = f(i, *args)
  340. while n > 0:
  341. cur = f(cur, *args)
  342. n -= 1
  343. return cur
  344. if options.generators:
  345. for item in GENERATORS:
  346. print item['name'],
  347. if item['args'] is not None:
  348. print item['args'],
  349. print '--', item['desc']
  350. exit()
  351. #generator = math.sin
  352. #generator = tri_wave
  353. #generator = square_wave
  354. generator = eval(options.generator)
  355. #def sigalrm(sig, frm):
  356. # global FREQ
  357. # FREQ = 0
  358. if options.numpy:
  359. def lin_seq(frm, to, cnt):
  360. return numpy.linspace(frm, to, cnt, dtype=numpy.int32)
  361. def samps(freq, amp, phase, cnt):
  362. samps = numpy.ndarray((cnt,), numpy.int32)
  363. pvel = 2 * math.pi * freq / RATE
  364. fac = options.volume * amp / float(STREAMS)
  365. for i in xrange(cnt):
  366. samps[i] = fac * max(-1, min(1, generator(phase)))
  367. phase = (phase + pvel) % (2 * math.pi)
  368. return samps, phase
  369. def to_data(samps):
  370. return samps.tobytes()
  371. def mix(a, b):
  372. return a + b
  373. def resample(samps, amt):
  374. samps = numpy.frombuffer(samps, numpy.int32)
  375. return numpy.interp(numpy.linspace(0, samps.shape[0], amt, False), numpy.linspace(0, samps.shape[0], samps.shape[0], False), samps).astype(numpy.int32).tobytes()
  376. else:
  377. def lin_seq(frm, to, cnt):
  378. step = (to-frm)/float(cnt)
  379. samps = [0]*cnt
  380. for i in xrange(cnt):
  381. p = i / float(cnt-1)
  382. samps[i] = int(lin_interp(frm, to, p))
  383. return samps
  384. def samps(freq, amp, phase, cnt):
  385. global RATE
  386. samps = [0]*cnt
  387. for i in xrange(cnt):
  388. samps[i] = int(2*amp / float(STREAMS) * max(-1, min(1, options.volume*generator((phase + 2 * math.pi * freq * i / RATE) % (2*math.pi)))))
  389. return samps, (phase + 2 * math.pi * freq * cnt / RATE) % (2*math.pi)
  390. def to_data(samps):
  391. return struct.pack('i'*len(samps), *samps)
  392. def mix(a, b):
  393. return [min(MAX, max(MIN, i + j)) for i, j in zip(a, b)]
  394. def resample(samps, amt):
  395. isl = len(samps) / 4
  396. if isl == amt:
  397. return samps
  398. arr = struct.unpack(str(isl)+'i', samps)
  399. out = []
  400. for i in range(amt):
  401. effidx = i * (isl / amt)
  402. ieffidx = int(effidx)
  403. if ieffidx == effidx:
  404. out.append(arr[ieffidx])
  405. else:
  406. frac = effidx - ieffidx
  407. out.append(arr[ieffidx] * (1-frac) + arr[ieffidx+1] * frac)
  408. return struct.pack(str(amt)+'i', *out)
  409. def gen_data(data, frames, tm, status):
  410. global FREQS, PHASE, Z_SAMP, LAST_SAMP, LAST_SAMPLES, QUEUED_PCM, DRIFT_FACTOR, DRIFT_ERROR
  411. if len(QUEUED_PCM) >= frames*4:
  412. desired_frames = DRIFT_FACTOR * frames
  413. err_frames = desired_frames - int(desired_frames)
  414. desired_frames = int(desired_frames)
  415. DRIFT_ERROR += err_frames
  416. if DRIFT_ERROR >= 1.0:
  417. desired_frames += 1
  418. DRIFT_ERROR -= 1.0
  419. fdata = QUEUED_PCM[:desired_frames*4]
  420. QUEUED_PCM = QUEUED_PCM[desired_frames*4:]
  421. if options.gui:
  422. LAST_SAMPLES.extend(struct.unpack(str(desired_frames)+'i', fdata))
  423. return resample(fdata, frames), pyaudio.paContinue
  424. if options.numpy:
  425. fdata = numpy.zeros((frames,), numpy.int32)
  426. else:
  427. fdata = [0] * frames
  428. for i in range(STREAMS):
  429. FREQ = FREQS[i]
  430. if options.vibrato > 0 and FREQ > 0:
  431. midi = 12 * math.log(FREQ / 440.0, 2) + 69
  432. midi += options.vibrato * math.sin(time.time() * 2 * math.pi * options.vibrato_freq + i * 2 * math.pi / STREAMS)
  433. FREQ = 440.0 * 2 ** ((midi - 69) / 12)
  434. LAST_SAMP = LAST_SAMPS[i]
  435. AMP = AMPS[i]
  436. EXPIRATION = EXPIRATIONS[i]
  437. PHASE = PHASES[i]
  438. if FREQ != 0:
  439. if time.time() > EXPIRATION:
  440. FREQ = 0
  441. FREQS[i] = 0
  442. if FREQ == 0:
  443. if LAST_SAMP != 0:
  444. vdata = lin_seq(LAST_SAMP, 0, frames)
  445. fdata = mix(fdata, vdata)
  446. LAST_SAMPS[i] = vdata[-1]
  447. else:
  448. vdata, PHASE = samps(FREQ, AMP, PHASE, frames)
  449. fdata = mix(fdata, vdata)
  450. PHASES[i] = PHASE
  451. LAST_SAMPS[i] = vdata[-1]
  452. if options.gui:
  453. LAST_SAMPLES.extend(fdata)
  454. return (to_data(fdata), pyaudio.paContinue)
  455. pa = pyaudio.PyAudio()
  456. stream = pa.open(rate=RATE, channels=1, format=pyaudio.paInt32, output=True, frames_per_buffer=FPB, stream_callback=gen_data)
  457. if options.gui:
  458. guithread = threading.Thread(target=GUIs[options.gui])
  459. guithread.setDaemon(True)
  460. guithread.start()
  461. if options.test:
  462. FREQS[0] = 440
  463. EXPIRATIONS[0] = time.time() + 1
  464. time.sleep(1)
  465. FREQS[0] = 0
  466. time.sleep(1)
  467. FREQS[0] = 880
  468. EXPIRATIONS[0] = time.time() + 1
  469. time.sleep(1)
  470. FREQS[0] = 440
  471. EXPIRATIONS[0] = time.time() + 2
  472. time.sleep(2)
  473. exit()
  474. sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
  475. sock.bind(('', PORT))
  476. #signal.signal(signal.SIGALRM, sigalrm)
  477. counter = 0
  478. while True:
  479. data = ''
  480. while not data:
  481. try:
  482. data, cli = sock.recvfrom(4096)
  483. except socket.error:
  484. pass
  485. pkt = Packet.FromStr(data)
  486. if pkt.cmd != CMD.PCM:
  487. crgb = [int(i*255) for i in colorsys.hls_to_rgb((float(counter) / options.counter_modulus) % 1.0, 0.5, 1.0)]
  488. print '\x1b[38;2;{};{};{}m#'.format(*crgb),
  489. counter += 1
  490. print '\x1b[mFrom', cli, 'command', pkt.cmd,
  491. if pkt.cmd == CMD.KA:
  492. print '\x1b[37mKA'
  493. elif pkt.cmd == CMD.PING:
  494. sock.sendto(data, cli)
  495. print '\x1b[1;33mPING'
  496. elif pkt.cmd == CMD.QUIT:
  497. print '\x1b[1;31mQUIT'
  498. break
  499. elif pkt.cmd == CMD.PLAY:
  500. voice = pkt.data[4]
  501. dur = pkt.data[0]+pkt.data[1]/1000000.0
  502. freq = pkt.data[2]
  503. if options.chorus > 0:
  504. midi = 12 * math.log(freq / 440.0, 2) + 69
  505. midi += (random.random() * 2 - 1) * options.chorus
  506. freq = 440.0 * 2 ** ((midi - 69) / 12)
  507. FREQS[voice] = freq
  508. amp = pkt.as_float(3)
  509. if options.clamp:
  510. amp = max(min(amp, 1.0), 0.0)
  511. AMPS[voice] = MAX * amp
  512. EXPIRATIONS[voice] = time.time() + dur
  513. if not (pkt.data[5] & PLF.SAMEPHASE):
  514. PHASES[voice] = 0.0
  515. vrgb = [int(i*255) for i in colorsys.hls_to_rgb(float(voice) / STREAMS * 2.0 / 3.0, 0.5, 1.0)]
  516. frgb = rgb_for_freq_amp(pkt.data[2], pkt.as_float(3))
  517. print '\x1b[1;32mPLAY',
  518. print '\x1b[1;38;2;{};{};{}mVOICE'.format(*vrgb), '{:03}'.format(voice),
  519. print '\x1b[1;38;2;{};{};{}mFREQ'.format(*frgb), '{:04}'.format(pkt.data[2]), 'AMP', '%08.6f'%pkt.as_float(3),
  520. if pkt.data[0] == 0 and pkt.data[1] == 0:
  521. print '\x1b[1;35mSTOP!!!'
  522. else:
  523. print '\x1b[1;36mDUR', '%08.6f'%dur
  524. #signal.setitimer(signal.ITIMER_REAL, dur)
  525. elif pkt.cmd == CMD.CAPS:
  526. data = [0] * 8
  527. data[0] = STREAMS
  528. data[1] = stoi(IDENT)
  529. for i in xrange(len(UID)/4 + 1):
  530. data[i+2] = stoi(UID[4*i:4*(i+1)])
  531. sock.sendto(str(Packet(CMD.CAPS, *data)), cli)
  532. print '\x1b[1;34mCAPS'
  533. elif pkt.cmd == CMD.PCM:
  534. fdata = data[4:]
  535. fdata = struct.pack('16i', *[i<<16 for i in struct.unpack('16h', fdata)])
  536. QUEUED_PCM += fdata
  537. #print 'Now', len(QUEUED_PCM) / 4.0, 'frames queued'
  538. elif pkt.cmd == CMD.PCMSYN:
  539. print '\x1b[1;37mPCMSYN',
  540. bufamt = pkt.data[0]
  541. print '\x1b[0m DESBUF={}'.format(bufamt),
  542. if LAST_SYN is None:
  543. LAST_SYN = time.time()
  544. else:
  545. dt = time.time() - LAST_SYN
  546. dfr = dt * RATE
  547. bufnow = len(QUEUED_PCM) / 4
  548. print '\x1b[35m CURBUF={}'.format(bufnow),
  549. if bufnow != 0:
  550. DRIFT_FACTOR = 1.0 + float(bufnow - bufamt) / (bufamt * dfr * options.pcm_corr_rate)
  551. print '\x1b[37m (DRIFT_FACTOR=%08.6f)'%(DRIFT_FACTOR,),
  552. print
  553. else:
  554. print '\x1b[1;31mUnknown cmd', pkt.cmd