client.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. # A simple client that generates sine waves via python-pyaudio
  2. import signal
  3. import pyaudio
  4. import sys
  5. import socket
  6. import time
  7. import math
  8. import struct
  9. import socket
  10. import optparse
  11. import array
  12. import random
  13. import threading
  14. import thread
  15. import colorsys
  16. from packet import Packet, CMD, PLF, stoi, OBLIGATE_POLYPHONE
  17. parser = optparse.OptionParser()
  18. parser.add_option('-t', '--test', dest='test', action='store_true', help='Play a test sequence (440,<rest>,880,440), then exit')
  19. parser.add_option('-g', '--generator', dest='generator', default='math.sin', help='Set the generator (to a Python expression)')
  20. parser.add_option('--generators', dest='generators', action='store_true', help='Show the list of generators, then exit')
  21. parser.add_option('-u', '--uid', dest='uid', default='', help='Set the UID (identifier) of this client in the network')
  22. parser.add_option('-p', '--port', dest='port', type='int', default=13676, help='Set the port to listen on')
  23. parser.add_option('-r', '--rate', dest='rate', type='int', default=44100, help='Set the sample rate of the audio device')
  24. parser.add_option('-V', '--volume', dest='volume', type='float', default=1.0, help='Set the volume factor (>1 distorts, <1 attenuates)')
  25. parser.add_option('-n', '--streams', dest='streams', type='int', default=1, help='Set the number of streams this client will play back')
  26. parser.add_option('-N', '--numpy', dest='numpy', action='store_true', help='Use numpy acceleration')
  27. parser.add_option('-G', '--gui', dest='gui', default='', help='set a GUI to use')
  28. parser.add_option('-c', '--clamp', dest='clamp', action='store_true', help='Clamp over-the-wire amplitudes to 0.0-1.0')
  29. parser.add_option('-C', '--chorus', dest='chorus', default=0.0, type='float', help='Apply uniform random offsets (in MIDI pitch space)')
  30. parser.add_option('--vibrato', dest='vibrato', default=0.0, type='float', help='Apply periodic perturbances in pitch space by this amplitude (in MIDI pitches)')
  31. parser.add_option('--vibrato-freq', dest='vibrato_freq', default=6.0, type='float', help='Frequency of the vibrato perturbances in Hz')
  32. parser.add_option('--fmul', dest='fmul', default=1.0, type='float', help='Multiply requested frequencies by this amount')
  33. parser.add_option('--narts', dest='narts', default=64, type='int', help='Store this many articulation parameters for generator use (global is GARTS, voice-local is LARTS)')
  34. parser.add_option('--pg-fullscreen', dest='fullscreen', action='store_true', help='Use a full-screen video mode')
  35. parser.add_option('--pg-samp-width', dest='samp_width', type='int', help='Set the width of the sample pane (by default display width / 2)')
  36. parser.add_option('--pg-bgr-width', dest='bgr_width', type='int', help='Set the width of the bargraph pane (by default display width / 2)')
  37. parser.add_option('--pg-height', dest='height', type='int', help='Set the height of the window or full-screen video mode')
  38. parser.add_option('--pg-no-colback', dest='no_colback', action='store_true', help='Don\'t render a colored background')
  39. parser.add_option('--pg-low-freq', dest='low_freq', type='int', default=40, help='Low frequency for colored background')
  40. parser.add_option('--pg-high-freq', dest='high_freq', type='int', default=1500, help='High frequency for colored background')
  41. parser.add_option('--pg-log-base', dest='log_base', type='int', default=2, help='Logarithmic base for coloring (0 to make linear)')
  42. parser.add_option('--counter-modulus', dest='counter_modulus', type='int', default=16, help='Number of packet events in period of the terminal color scroll on the left margin')
  43. parser.add_option('--pcm-corr-rate', dest='pcm_corr_rate', type='float', default=0.05, help='Amount of time to correct buffer drift, measured as percentage of the current sync rate')
  44. options, args = parser.parse_args()
  45. if options.numpy:
  46. import numpy
  47. PORT = options.port
  48. STREAMS = options.streams
  49. IDENT = 'TONE'
  50. UID = options.uid
  51. LAST_SAMPS = [0] * STREAMS
  52. LAST_SAMPLES = []
  53. FREQS = [0] * STREAMS
  54. REAL_FREQS = [0] * STREAMS
  55. PHASES = [0] * STREAMS
  56. RATE = options.rate
  57. FPB = 64
  58. Z_SAMP = '\x00\x00\x00\x00'
  59. MAX = 0x7fffffff
  60. AMPS = [MAX] * STREAMS
  61. MIN = -0x80000000
  62. EXPIRATIONS = [0] * STREAMS
  63. QUEUED_PCM = ''
  64. DRIFT_FACTOR = 1.0
  65. DRIFT_ERROR = 0.0
  66. LAST_SYN = None
  67. CUR_PERIODS = [0] * STREAMS
  68. CUR_PERIOD = 0.0
  69. GARTS = [0.0] * options.narts
  70. VLARTS = [[0.0] * options.narts for i in xrange(STREAMS)]
  71. LARTS = None
  72. def lin_interp(frm, to, p):
  73. return p*to + (1-p)*frm
  74. def rgb_for_freq_amp(f, a):
  75. a = max((min((a, 1.0)), 0.0))
  76. pitchval = float(f - options.low_freq) / (options.high_freq - options.low_freq)
  77. if options.log_base == 0:
  78. try:
  79. pitchval = math.log(pitchval) / math.log(options.log_base)
  80. except ValueError:
  81. pass
  82. bgcol = colorsys.hls_to_rgb(min((1.0, max((0.0, pitchval)))), 0.5 * (a ** 2), 1.0)
  83. return [int(i*255) for i in bgcol]
  84. # GUIs
  85. GUIs = {}
  86. def GUI(f):
  87. GUIs[f.__name__] = f
  88. return f
  89. @GUI
  90. def pygame_notes():
  91. import pygame
  92. import pygame.gfxdraw
  93. pygame.init()
  94. dispinfo = pygame.display.Info()
  95. DISP_WIDTH = 640
  96. DISP_HEIGHT = 480
  97. if dispinfo.current_h > 0 and dispinfo.current_w > 0:
  98. DISP_WIDTH = dispinfo.current_w
  99. DISP_HEIGHT = dispinfo.current_h
  100. SAMP_WIDTH = DISP_WIDTH / 2
  101. if options.samp_width > 0:
  102. SAMP_WIDTH = options.samp_width
  103. BGR_WIDTH = DISP_WIDTH / 2
  104. if options.bgr_width > 0:
  105. BGR_WIDTH = options.bgr_width
  106. HEIGHT = DISP_HEIGHT
  107. if options.height > 0:
  108. HEIGHT = options.height
  109. flags = 0
  110. if options.fullscreen:
  111. flags |= pygame.FULLSCREEN
  112. disp = pygame.display.set_mode((SAMP_WIDTH + BGR_WIDTH, HEIGHT), flags)
  113. WIDTH, HEIGHT = disp.get_size()
  114. SAMP_WIDTH = WIDTH / 2
  115. BGR_WIDTH = WIDTH - SAMP_WIDTH
  116. PFAC = HEIGHT / 128.0
  117. sampwin = pygame.Surface((SAMP_WIDTH, HEIGHT))
  118. sampwin.set_colorkey((0, 0, 0))
  119. lastsy = HEIGHT / 2
  120. bgrwin = pygame.Surface((BGR_WIDTH, HEIGHT))
  121. bgrwin.set_colorkey((0, 0, 0))
  122. clock = pygame.time.Clock()
  123. font = pygame.font.SysFont(pygame.font.get_default_font(), 24)
  124. while True:
  125. if options.no_colback:
  126. disp.fill((0, 0, 0), (0, 0, WIDTH, HEIGHT))
  127. else:
  128. gap = WIDTH / STREAMS
  129. for i in xrange(STREAMS):
  130. FREQ = REAL_FREQS[i]
  131. AMP = AMPS[i]
  132. if FREQ > 0:
  133. bgcol = rgb_for_freq_amp(FREQ, float(AMP) / MAX)
  134. else:
  135. bgcol = (0, 0, 0)
  136. #print i, ':', pitchval
  137. disp.fill(bgcol, (i*gap, 0, gap, HEIGHT))
  138. bgrwin.scroll(-1, 0)
  139. bgrwin.fill((0, 0, 0), (BGR_WIDTH - 1, 0, 1, HEIGHT))
  140. for i in xrange(STREAMS):
  141. FREQ = REAL_FREQS[i]
  142. AMP = AMPS[i]
  143. if FREQ > 0:
  144. try:
  145. pitch = 12 * math.log(FREQ / 440.0, 2) + 69
  146. except ValueError:
  147. pitch = 0
  148. else:
  149. pitch = 0
  150. col = [min(max(int((AMP / MAX) * 255), 0), 255)] * 3
  151. bgrwin.fill(col, (BGR_WIDTH - 1, HEIGHT - pitch * PFAC - PFAC, 1, PFAC))
  152. sampwin.scroll(-len(LAST_SAMPLES), 0)
  153. x = max(0, SAMP_WIDTH - len(LAST_SAMPLES))
  154. sampwin.fill((0, 0, 0), (x, 0, SAMP_WIDTH - x, HEIGHT))
  155. for i in LAST_SAMPLES:
  156. sy = int((float(i) / MAX) * (HEIGHT / 2) + (HEIGHT / 2))
  157. pygame.gfxdraw.line(sampwin, x - 1, lastsy, x, sy, (0, 255, 0))
  158. x += 1
  159. lastsy = sy
  160. del LAST_SAMPLES[:]
  161. #w, h = SAMP_WIDTH, HEIGHT
  162. #pts = [(BGR_WIDTH, HEIGHT / 2), (w + BGR_WIDTH, HEIGHT / 2)]
  163. #x = w + BGR_WIDTH
  164. #for i in reversed(LAST_SAMPLES):
  165. # pts.insert(1, (x, int((h / 2) + (float(i) / MAX) * (h / 2))))
  166. # x -= 1
  167. # if x < BGR_WIDTH:
  168. # break
  169. #if len(pts) > 2:
  170. # pygame.gfxdraw.aapolygon(disp, pts, [0, 255, 0])
  171. disp.blit(bgrwin, (0, 0))
  172. disp.blit(sampwin, (BGR_WIDTH, 0))
  173. if QUEUED_PCM:
  174. tsurf = font.render('%+011.6g'%(DRIFT_FACTOR - 1,), True, (255, 255, 255), (0, 0, 0))
  175. disp.fill((0, 0, 0), tsurf.get_rect())
  176. disp.blit(tsurf, (0, 0))
  177. pygame.display.flip()
  178. for ev in pygame.event.get():
  179. if ev.type == pygame.KEYDOWN:
  180. if ev.key == pygame.K_ESCAPE:
  181. thread.interrupt_main()
  182. pygame.quit()
  183. exit()
  184. elif ev.type == pygame.QUIT:
  185. thread.interrupt_main()
  186. pygame.quit()
  187. exit()
  188. clock.tick(60)
  189. # Generator functions--should be cyclic within [0, 2*math.pi) and return [-1, 1]
  190. GENERATORS = [{'name': 'math.sin', 'args': None, 'desc': 'Sine function'},
  191. {'name':'math.cos', 'args': None, 'desc': 'Cosine function'}]
  192. def generator(desc=None, args=None):
  193. def inner(f, desc=desc, args=args):
  194. if desc is None:
  195. desc = f.__doc__
  196. GENERATORS.append({'name': f.__name__, 'desc': desc, 'args': args})
  197. return f
  198. return inner
  199. @generator('Simple triangle wave (peaks/troughs at pi/2, 3pi/2)')
  200. def tri_wave(theta):
  201. if theta < math.pi/2:
  202. return lin_interp(0, 1, theta/(math.pi/2))
  203. elif theta < 3*math.pi/2:
  204. return lin_interp(1, -1, (theta-math.pi/2)/math.pi)
  205. else:
  206. return lin_interp(-1, 0, (theta-3*math.pi/2)/(math.pi/2))
  207. @generator('Saw wave (line from (0, 1) to (2pi, -1))')
  208. def saw_wave(theta):
  209. return lin_interp(1, -1, theta/(math.pi * 2))
  210. @generator('Simple square wave (piecewise 1 at x<pi, 0 else)')
  211. def square_wave(theta):
  212. if theta < math.pi:
  213. return 1
  214. else:
  215. return -1
  216. @generator('Random (noise) generator')
  217. def noise(theta):
  218. return random.random() * 2 - 1
  219. @generator('File generator', '(<file>[, <bits=8>[, <signed=True>[, <0=linear interp (default), 1=nearest>[, <swapbytes=False>[, <loop=(fraction to loop, 0.0 is all, 1.0 is end, or False to not loop)>[, <loopend=1.0>[, periods=1 (periods in wave file)/freq=None (base frequency)/pitch=None (base MIDI pitch)]]]]]]])')
  220. class file_samp(object):
  221. LINEAR = 0
  222. NEAREST = 1
  223. TYPES = {8: 'B', 16: 'H', 32: 'L'}
  224. def __init__(self, fname, bits=8, signed=True, samp=LINEAR, swab=False, loop=0.0, loopend=1.0, periods=1.0, freq=None, pitch=None):
  225. tp = self.TYPES[bits]
  226. if signed:
  227. tp = tp.lower()
  228. self.max = float((2 << bits) - 1)
  229. if signed:
  230. self.max /= 2.0
  231. self.buffer = array.array(tp)
  232. self.buffer.fromstring(open(fname, 'rb').read())
  233. if swab:
  234. self.buffer.byteswap()
  235. self.samp = samp
  236. self.loop = loop
  237. self.loopend = loopend
  238. self.periods = periods
  239. if pitch is not None:
  240. freq = 440.0 * 2 ** ((pitch - 69) / 12.0)
  241. if freq is not None:
  242. self.periods = freq * len(self.buffer) / RATE
  243. print 'file_samp periods:', self.periods, 'freq:', freq, 'pitch:', pitch
  244. def __call__(self, theta):
  245. full_norm = CUR_PERIOD / (2*self.periods*math.pi)
  246. if full_norm > 1.0:
  247. if self.loop is False:
  248. return self.buffer[0]
  249. else:
  250. norm = (full_norm - 1.0) / (self.loopend - self.loop) % 1.0 * (self.loopend - self.loop) + self.loop
  251. else:
  252. norm = full_norm
  253. norm %= 1.0
  254. if self.samp == self.LINEAR:
  255. v = norm*len(self.buffer)
  256. l = int(math.floor(v))
  257. h = int(math.ceil(v))
  258. if l == h:
  259. return self.buffer[l]/self.max
  260. if h >= len(self.buffer):
  261. h = 0
  262. return lin_interp(self.buffer[l], self.buffer[h], v-l)/self.max
  263. elif self.samp == self.NEAREST:
  264. return self.buffer[int(math.ceil(norm*len(self.buffer) - 0.5))]/self.max
  265. @generator('Harmonics generator (adds overtones at f, 2f, 3f, 4f, etc.)', '(<generator>, <amplitude of f>, <amp 2f>, <amp 3f>, ...)')
  266. class harmonic(object):
  267. def __init__(self, gen, *spectrum):
  268. self.gen = gen
  269. self.spectrum = spectrum
  270. def __call__(self, theta):
  271. return max(-1, min(1, sum([amp*self.gen((i+1)*theta % (2*math.pi)) for i, amp in enumerate(self.spectrum)])))
  272. @generator('General harmonics generator (adds arbitrary overtones)', '(<generator>, <factor of f>, <amplitude>, <factor>, <amplitude>, ...)')
  273. class genharmonic(object):
  274. def __init__(self, gen, *harmonics):
  275. self.gen = gen
  276. self.harmonics = zip(harmonics[::2], harmonics[1::2])
  277. def __call__(self, theta):
  278. return max(-1, min(1, sum([amp * self.gen(i * theta % (2*math.pi)) for i, amp in self.harmonics])))
  279. @generator('Mix generator', '(<generator>[, <amp>], [<generator>[, <amp>], [...]])')
  280. class mixer(object):
  281. def __init__(self, *specs):
  282. self.pairs = []
  283. i = 0
  284. while i < len(specs):
  285. if i+1 < len(specs) and isinstance(specs[i+1], (float, int)):
  286. pair = (specs[i], specs[i+1])
  287. i += 2
  288. else:
  289. pair = (specs[i], None)
  290. i += 1
  291. self.pairs.append(pair)
  292. tamp = 1 - min(1, sum([amp for gen, amp in self.pairs if amp is not None]))
  293. parts = float(len([None for gen, amp in self.pairs if amp is None]))
  294. for idx, pair in enumerate(self.pairs):
  295. if pair[1] is None:
  296. self.pairs[idx] = (pair[0], tamp / parts)
  297. def __call__(self, theta):
  298. return max(-1, min(1, sum([amp*gen(theta) for gen, amp in self.pairs])))
  299. @generator('Phase offset generator (in radians; use math.pi)', '(<generator>, <offset>)')
  300. class phase_off(object):
  301. def __init__(self, gen, offset):
  302. self.gen = gen
  303. self.offset = offset
  304. def __call__(self, theta):
  305. return self.gen((theta + self.offset) % (2*math.pi))
  306. @generator('Normally distributed random-inversion square waves (chorus effect)', '(<sigma>)')
  307. class nd_square_wave(object):
  308. def __init__(self, sig):
  309. self.sig = sig
  310. self.invt = 0
  311. self.lastp = 2*math.pi
  312. def __call__(self, theta):
  313. if theta < self.lastp:
  314. self.invt = random.normalvariate(math.pi, self.sig)
  315. self.lastp = theta
  316. return -1 if theta < self.invt else 1
  317. @generator('Normally distributed random-point triangle waves (chorus effect)', '(<sigma>)')
  318. class nd_tri_wave(object):
  319. def __init__(self, sig):
  320. self.sig = sig
  321. self.p1 = 0.5*math.pi
  322. self.p2 = 1.5*math.pi
  323. self.lastp = 2*math.pi
  324. def __call__(self, theta):
  325. if theta < self.lastp:
  326. self.p1 = random.normalvariate(0.5*math.pi, self.sig)
  327. self.p2 = random.normalvariate(1.5*math.pi, self.sig)
  328. self.lastp = theta
  329. if theta < self.p1:
  330. return lin_interp(0, 1, theta / self.p1)
  331. elif theta < self.p2:
  332. return lin_interp(1, -1, (theta - self.p1) / (self.p2 - self.p1))
  333. else:
  334. return lin_interp(-1, 0, (theta - self.p2) / (2*math.pi - self.p2))
  335. @generator('Random phase offset', '(<generator>, <noise factor>)')
  336. class rand_phase_off(object):
  337. def __init__(self, gen, fac):
  338. self.gen = gen
  339. self.fac = fac
  340. def __call__(self, theta):
  341. return self.gen((theta + self.fac * random.random()) % (2*math.pi))
  342. @generator('Infinite Impulse Response low pass filter', '(<generator>, <RC normalized to dt=1 sample>)')
  343. class lowpass(object):
  344. def __init__(self, gen, rc):
  345. self.gen = gen
  346. self.alpha = 1.0 / (rc + 1)
  347. self.last = 0
  348. def __call__(self, theta):
  349. self.last += self.alpha * (self.gen(theta) - self.last)
  350. return self.last
  351. @generator('Infinite Impulse Response high pass filter', '(<generator>, <RC normalized to dt=1 sample>)')
  352. class highpass(object):
  353. def __init__(self, gen, rc):
  354. self.gen = gen
  355. self.alpha = rc / (rc + 1.0)
  356. self.last = 0
  357. self.lastx = 0
  358. def __call__(self, theta):
  359. x = self.gen(theta)
  360. self.last = self.alpha * (self.last + x - self.lastx)
  361. self.lastx = x
  362. return self.last
  363. @generator('Applies a function to itself repeatedly; often used with filters', '(<times>, <func>, <inner>, <extra arg 1>, <extra arg 2>, ...)')
  364. def order(n, f, i, *args):
  365. cur = f(i, *args)
  366. while n > 0:
  367. cur = f(cur, *args)
  368. n -= 1
  369. return cur
  370. if options.generators:
  371. for item in GENERATORS:
  372. print item['name'],
  373. if item['args'] is not None:
  374. print item['args'],
  375. print '--', item['desc']
  376. exit()
  377. #generator = math.sin
  378. #generator = tri_wave
  379. #generator = square_wave
  380. generator = eval(options.generator)
  381. #def sigalrm(sig, frm):
  382. # global FREQ
  383. # FREQ = 0
  384. if options.numpy:
  385. def lin_seq(frm, to, cnt):
  386. return numpy.linspace(frm, to, cnt, dtype=numpy.int32)
  387. def samps(freq, amp, phase, cnt):
  388. global CUR_PERIOD
  389. samps = numpy.ndarray((cnt,), numpy.int32)
  390. pvel = 2 * math.pi * freq / RATE
  391. fac = options.volume * amp / float(STREAMS)
  392. for i in xrange(cnt):
  393. samps[i] = fac * max(-1, min(1, generator((phase + i * pvel) % (2*math.pi))))
  394. CUR_PERIOD += pvel
  395. return samps, phase + pvel * cnt
  396. def to_data(samps):
  397. return samps.tobytes()
  398. def mix(a, b):
  399. return a + b
  400. def resample(samps, amt):
  401. samps = numpy.frombuffer(samps, numpy.int32)
  402. return numpy.interp(numpy.linspace(0, samps.shape[0], amt, False), numpy.linspace(0, samps.shape[0], samps.shape[0], False), samps).astype(numpy.int32).tobytes()
  403. else:
  404. def lin_seq(frm, to, cnt):
  405. step = (to-frm)/float(cnt)
  406. samps = [0]*cnt
  407. for i in xrange(cnt):
  408. p = i / float(cnt-1)
  409. samps[i] = int(lin_interp(frm, to, p))
  410. return samps
  411. def samps(freq, amp, phase, cnt):
  412. global RATE, CUR_PERIOD
  413. samps = [0]*cnt
  414. for i in xrange(cnt):
  415. samps[i] = int(amp / float(STREAMS) * max(-1, min(1, options.volume*generator((phase + 2 * math.pi * freq * i / RATE) % (2*math.pi)))))
  416. CUR_PERIOD += 2 * math.pi * freq / RATE
  417. next_phase = (phase + 2 * math.pi * freq * cnt / RATE)
  418. return samps, next_phase
  419. def to_data(samps):
  420. return struct.pack('i'*len(samps), *samps)
  421. def mix(a, b):
  422. return [min(MAX, max(MIN, i + j)) for i, j in zip(a, b)]
  423. def resample(samps, amt):
  424. isl = len(samps) / 4
  425. if isl == amt:
  426. return samps
  427. arr = struct.unpack(str(isl)+'i', samps)
  428. out = []
  429. for i in range(amt):
  430. effidx = i * (isl / amt)
  431. ieffidx = int(effidx)
  432. if ieffidx == effidx:
  433. out.append(arr[ieffidx])
  434. else:
  435. frac = effidx - ieffidx
  436. out.append(arr[ieffidx] * (1-frac) + arr[ieffidx+1] * frac)
  437. return struct.pack(str(amt)+'i', *out)
  438. def gen_data(data, frames, tm, status):
  439. global FREQS, PHASE, Z_SAMP, LAST_SAMP, LAST_SAMPLES, QUEUED_PCM, DRIFT_FACTOR, DRIFT_ERROR, CUR_PERIOD, LARTS
  440. if len(QUEUED_PCM) >= frames*4:
  441. desired_frames = DRIFT_FACTOR * frames
  442. err_frames = desired_frames - int(desired_frames)
  443. desired_frames = int(desired_frames)
  444. DRIFT_ERROR += err_frames
  445. if DRIFT_ERROR >= 1.0:
  446. desired_frames += 1
  447. DRIFT_ERROR -= 1.0
  448. fdata = QUEUED_PCM[:desired_frames*4]
  449. QUEUED_PCM = QUEUED_PCM[desired_frames*4:]
  450. if options.gui:
  451. LAST_SAMPLES.extend(struct.unpack(str(desired_frames)+'i', fdata))
  452. return resample(fdata, frames), pyaudio.paContinue
  453. if options.numpy:
  454. fdata = numpy.zeros((frames,), numpy.int32)
  455. else:
  456. fdata = [0] * frames
  457. for i in range(STREAMS):
  458. FREQ = FREQS[i]
  459. if options.vibrato > 0 and FREQ > 0:
  460. midi = 12 * math.log(FREQ / 440.0, 2) + 69
  461. midi += options.vibrato * math.sin(time.time() * 2 * math.pi * options.vibrato_freq + i * 2 * math.pi / STREAMS)
  462. FREQ = 440.0 * 2 ** ((midi - 69) / 12)
  463. REAL_FREQS[i] = FREQ
  464. LAST_SAMP = LAST_SAMPS[i]
  465. AMP = AMPS[i]
  466. EXPIRATION = EXPIRATIONS[i]
  467. PHASE = PHASES[i]
  468. CUR_PERIOD = CUR_PERIODS[i]
  469. LARTS = VLARTS[i]
  470. if FREQ != 0:
  471. if time.time() > EXPIRATION:
  472. FREQ = 0
  473. FREQS[i] = 0
  474. if FREQ == 0:
  475. if LAST_SAMP != 0:
  476. vdata = lin_seq(LAST_SAMP, 0, frames)
  477. fdata = mix(fdata, vdata)
  478. LAST_SAMPS[i] = vdata[-1]
  479. else:
  480. vdata, CUR_PERIOD = samps(FREQ, AMP, CUR_PERIOD, frames)
  481. PHASE = (PHASE + CUR_PERIOD) % (2 * math.pi)
  482. fdata = mix(fdata, vdata)
  483. PHASES[i] = PHASE
  484. CUR_PERIODS[i] = CUR_PERIOD
  485. LAST_SAMPS[i] = vdata[-1]
  486. if options.gui:
  487. LAST_SAMPLES.extend(fdata)
  488. return (to_data(fdata), pyaudio.paContinue)
  489. pa = pyaudio.PyAudio()
  490. stream = pa.open(rate=RATE, channels=1, format=pyaudio.paInt32, output=True, frames_per_buffer=FPB, stream_callback=gen_data)
  491. if options.gui:
  492. guithread = threading.Thread(target=GUIs[options.gui])
  493. guithread.setDaemon(True)
  494. guithread.start()
  495. if options.test:
  496. FREQS[0] = 440
  497. EXPIRATIONS[0] = time.time() + 1
  498. CUR_PERIODS[0] = 0.0
  499. time.sleep(1)
  500. FREQS[0] = 0
  501. time.sleep(1)
  502. FREQS[0] = 880
  503. EXPIRATIONS[0] = time.time() + 1
  504. CUR_PERIODS[0] = 0.0
  505. time.sleep(1)
  506. FREQS[0] = 440
  507. EXPIRATIONS[0] = time.time() + 2
  508. CUR_PERIODS[0] = 0.0
  509. time.sleep(2)
  510. exit()
  511. sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
  512. sock.bind(('', PORT))
  513. #signal.signal(signal.SIGALRM, sigalrm)
  514. counter = 0
  515. while True:
  516. data = ''
  517. while not data:
  518. try:
  519. data, cli = sock.recvfrom(4096)
  520. except socket.error:
  521. pass
  522. pkt = Packet.FromStr(data)
  523. if pkt.cmd != CMD.PCM:
  524. crgb = [int(i*255) for i in colorsys.hls_to_rgb((float(counter) / options.counter_modulus) % 1.0, 0.5, 1.0)]
  525. print '\x1b[38;2;{};{};{}m#'.format(*crgb),
  526. counter += 1
  527. print '\x1b[mFrom', cli, 'command', pkt.cmd,
  528. if pkt.cmd == CMD.KA:
  529. print '\x1b[37mKA'
  530. elif pkt.cmd == CMD.PING:
  531. sock.sendto(data, cli)
  532. print '\x1b[1;33mPING'
  533. elif pkt.cmd == CMD.QUIT:
  534. print '\x1b[1;31mQUIT'
  535. break
  536. elif pkt.cmd == CMD.PLAY:
  537. voice = pkt.data[4]
  538. dur = pkt.data[0]+pkt.data[1]/1000000.0
  539. freq = pkt.data[2] * options.fmul
  540. if options.chorus > 0:
  541. midi = 12 * math.log(freq / 440.0, 2) + 69
  542. midi += (random.random() * 2 - 1) * options.chorus
  543. freq = 440.0 * 2 ** ((midi - 69) / 12)
  544. FREQS[voice] = freq
  545. amp = pkt.as_float(3)
  546. if options.clamp:
  547. amp = max(min(amp, 1.0), 0.0)
  548. AMPS[voice] = MAX * amp
  549. EXPIRATIONS[voice] = time.time() + dur
  550. if not (pkt.data[5] & PLF.SAMEPHASE):
  551. CUR_PERIODS[voice] = 0.0
  552. PHASES[voice] = 0.0
  553. vrgb = [int(i*255) for i in colorsys.hls_to_rgb(float(voice) / STREAMS * 2.0 / 3.0, 0.5, 1.0)]
  554. frgb = rgb_for_freq_amp(pkt.data[2], pkt.as_float(3))
  555. print '\x1b[1;32mPLAY',
  556. print '\x1b[1;38;2;{};{};{}mVOICE'.format(*vrgb), '{:03}'.format(voice),
  557. print '\x1b[1;38;2;{};{};{}mFREQ'.format(*frgb), '{:04}'.format(pkt.data[2]), 'AMP', '%08.6f'%pkt.as_float(3),
  558. if pkt.data[5] & PLF.SAMEPHASE:
  559. print '\x1b[1;37mSAMEPHASE',
  560. if pkt.data[0] == 0 and pkt.data[1] == 0:
  561. print '\x1b[1;31mSTOP!!!'
  562. else:
  563. print '\x1b[1;36mDUR', '%08.6f'%dur
  564. #signal.setitimer(signal.ITIMER_REAL, dur)
  565. elif pkt.cmd == CMD.CAPS:
  566. data = [0] * 8
  567. data[0] = STREAMS
  568. data[1] = stoi(IDENT)
  569. for i in xrange(len(UID)/4 + 1):
  570. data[i+2] = stoi(UID[4*i:4*(i+1)])
  571. sock.sendto(str(Packet(CMD.CAPS, *data)), cli)
  572. print '\x1b[1;34mCAPS'
  573. elif pkt.cmd == CMD.PCM:
  574. fdata = data[4:]
  575. fdata = struct.pack('16i', *[i<<16 for i in struct.unpack('16h', fdata)])
  576. QUEUED_PCM += fdata
  577. #print 'Now', len(QUEUED_PCM) / 4.0, 'frames queued'
  578. elif pkt.cmd == CMD.PCMSYN:
  579. print '\x1b[1;37mPCMSYN',
  580. bufamt = pkt.data[0]
  581. print '\x1b[0m DESBUF={}'.format(bufamt),
  582. if LAST_SYN is None:
  583. LAST_SYN = time.time()
  584. else:
  585. dt = time.time() - LAST_SYN
  586. dfr = dt * RATE
  587. bufnow = len(QUEUED_PCM) / 4
  588. print '\x1b[35m CURBUF={}'.format(bufnow),
  589. if bufnow != 0:
  590. DRIFT_FACTOR = 1.0 + float(bufnow - bufamt) / (bufamt * dfr * options.pcm_corr_rate)
  591. print '\x1b[37m (DRIFT_FACTOR=%08.6f)'%(DRIFT_FACTOR,),
  592. print
  593. elif pkt.cmd == CMD.ARTP:
  594. print '\x1b[1;36mARTP',
  595. if pkt.data[0] == OBLIGATE_POLYPHONE:
  596. print '\x1b[1;31mGLOBAL',
  597. else:
  598. vrgb = [int(i*255) for i in colorsys.hls_to_rgb(float(pkt.data[0]) / STREAMS * 2.0 / 3.0, 0.5, 1.0)]
  599. print '\x1b[1;38;2;{};{};{}mVOICE'.format(*vrgb), '{:03}'.format(pkt.data[0]),
  600. print '\x1b[1;36mINDEX', pkt.data[1], '\x1b[1;37mVALUE', '%08.6f'%pkt.as_float(2),
  601. if pkt.data[1] >= options.narts:
  602. print '\x1b[1;31mOOB!!!',
  603. else:
  604. if pkt.data[0] == OBLIGATE_POLYPHONE:
  605. GARTS[pkt.data[1]] = pkt.as_float(2)
  606. else:
  607. VLARTS[pkt.data[0]][pkt.data[1]] = pkt.as_float(2)
  608. print
  609. else:
  610. print '\x1b[1;31mUnknown cmd', pkt.cmd